Apparatus for certifying angular-displacement transducers

1983 ◽  
Vol 26 (10) ◽  
pp. 816-818
Author(s):  
B. N. Ivanov
Author(s):  
Alton J. Reich ◽  
Steve J. Doherty ◽  
Keith A. Williams

The Arnold Engineering Development Center (AEDC) testing complex includes more than 50 wind tunnels, test cells, arc heaters, and other specialized test facilities. Of these, 27 units have capabilities that are unmatched in the United States, and 14 are unmatched in the world. These unique facilities create equally unique operating environments for instrumentation used for monitoring and control of test conditions. Several high flow-rate, supersonic wind tunnels utilize off-the-shelf angular displacement transducers (ADTs) for monitoring the position of 90° valves (i.e. butterfly valves) used to control the air flow-rate and bulk pressure during testing. Due to the high air flow rates in supply and exhaust ducts, there are significant structural vibrations to which the ADTs are subjected. These ADTs have experienced an unacceptably high rate of failure during testing. In the event of an ADT failure, alternative flow paths may, in some cases, be utilized. If an alternative path cannot be found, however, test operations must be suspended while the faulty sensor is replaced; leading to significant cost and schedule impacts associated with the down-time. This paper discusses an effort to understand the root cause of the ADT failures based on design information, and experience in the field. Several alternative mounting conditions were considered in order to reduce the vibrational loads acting on the ADT. A number of the alternatives consisted of utilizing different shaft couplings to couple the motion of the valve stems and the ADT sensor shaft. Experiments were performed at the University of Alabama’s Applied Controls Laboratory to test the effect of the different enclosures and shaft couplings. Preliminary results indicate that the shaft coupling, in particular, have a direct impact on shaft loads transmitted to the ADT. Test results and conclusions are presented.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


Author(s):  
Peter Mann

This chapter discusses the importance of circular motion and rotations, whose applications to chemical systems are plentiful. Circular motion is the book’s first example of a special case of motion using the laws developed in previous chapters. The chapter begins with the basic definitions of circular motion; as uniform rotation around a principle axis is much easier to consider, it is the focus of this chapter and is used to develop some key ideas. The chapter discusses angular displacement, angular velocity, angular momentum, torque, rigid bodies, orbital and spin momenta, inertia tensors and non-inertial frames and explores fictitious forces as well as transformations in rotating frames.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1162
Author(s):  
Hogene Kim ◽  
Sangwoo Cho ◽  
Hwiyoung Lee

This study involves measurements of bi-axial ankle stiffness in older adults, where the ankle joint is passively moved along the talocrural and subtalar joints using a custom ankle movement trainer. A total of 15 elderly individuals participated in test–retest reliability measurements of bi-axial ankle stiffness at exactly one-week intervals for validation of the angular displacement in the device. The ankle’s range of motion was also compared, along with its stiffness. The kinematic measurements significantly corresponded to results from a marker-based motion capture system (dorsi-/plantar flexion: r = 0.996; inversion/eversion: r = 0.985). Bi-axial ankle stiffness measurements showed significant intra-class correlations (ICCs) between the two visits for all ankle movements at slower (2.14°/s, ICC = 0.712) and faster (9.77°/s, ICC = 0.879) speeds. Stiffness measurements along the talocrural joint were thus shown to have significant negative correlation with active ankle range of motion (r = −0.631, p = 0.012). The ankle movement trainer, based on anatomical characteristics, was thus used to demonstrate valid and reliable bi-axial ankle stiffness measurements for movements along the talocrural and subtalar joint axes. Reliable measurements of ankle stiffness may help clinicians and researchers when designing and fabricating ankle-foot orthosis for people with upper-motor neuron disorders, such as stroke.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 103
Author(s):  
Guolong Zhang ◽  
Guilin Yang ◽  
Yimin Deng ◽  
Tianjiang Zheng ◽  
Zaojun Fang ◽  
...  

The soft robots actuated by pressure, cables, thermal, electrosorption, combustion and smart materials are usually faced with the problems of poor portability, noise, weak load capacity, small deformation and high driving voltages. In this paper, a novel pneumatic generator for soft robots based on the gas-liquid reversible transition is proposed, which has the advantages of large output force, easy deformation, strong load capacity and high flexibility. The pressure of the pneumatic generator surges or drops flexibly through the reversible transformation between liquid and gas phase, making the soft actuator stretch or contract regularly, without external motors, compressors and pressure-regulating components. The gas-liquid reversible-transition actuation process is modeled to analyze its working mechanism and characteristics. The pressure during the pressurization stage increases linearly with a rate regulated by the heating power and gas volume. It decreases exponentially with the exponential term as a quadratic function of time at the fast depressurization stage, while with the exponential term as a linear function of time at the slow depressurization stage. The drop rate can be adjusted by changing the gas volume and cooling conditions. Furthermore, effectiveness has been verified through experiments of the prototype. The pressure reaches 25 bar with a rising rate of +3.935 bar/s when 5 mL weak electrolyte solution is heated at 800 W, and the maximum depressurization rate in air cooling is –3.796 bar/s. The soft finger actuated by the pneumatic generator can bend with an angular displacement of 67.5°. The proposed pneumatic generator shows great potential to be used for the structure, driving and sensing integration of artificial muscles.


2021 ◽  
pp. 1-9
Author(s):  
Evan V. Papa ◽  
Rita M. Patterson ◽  
Nicoleta Bugnariu

BACKGROUND: Nearly half of persons with Parkinson disease (PD) report fatigue as a factor in their fall history. However, it is unknown whether these self-reported falls are caused by a sensation of fatigue or performance fatigue. OBJECTIVE: We sought to investigate the influences of performance fatigue and age on postural control in persons with PD. METHODS: Individuals with PD (n = 14) underwent postural control assessments before (T0) and immediately after (T1) fatiguing exercise. Biomechanical data were gathered on participants completing a treadmill-induced, posterior-directed fall. Performance fatigue was produced using lower extremity resistance exercise on an isokinetic ergometer. Repeated measures ANCOVAs were used with age as a covariate to determine the effects of performance fatigue on biomechanical variables. RESULTS: After adjustment for age, there was a statistically significant difference in peak center of pressure (COP) latency during the support phase of recovery. Pairwise comparisons demonstrated a decrease in peak ankle displacement from T0 to T1. Age was also found to be significantly related to reaction time and peak knee displacement while participants were fatigued. CONCLUSIONS: The decreased peak COP latency, along with decreased ankle angular displacement, suggest that persons with PD adopt a stiffening strategy in response to backward directed falls. Postural stiffening is not uncommon in persons with PD and could be a risk factor for falls. Older individuals with PD demonstrate slower mobility scores and decreased reaction times in the setting of fatigue, suggesting a combined effect of the aging and fatigue processes.


2021 ◽  
Vol 1901 (1) ◽  
pp. 012104
Author(s):  
A I Cheredov ◽  
A V Shchelkanov

2007 ◽  
Vol 342-343 ◽  
pp. 581-584
Author(s):  
Byung Young Moon ◽  
Kwon Son ◽  
Jung Hong Park

Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understanding how variations in the gait pattern change over time. Healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Gait pattern is found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.


Sign in / Sign up

Export Citation Format

Share Document