X-Ray photoelectron spectroscopy of corrosion inhibitors. 4. X-ray photoelectron investigation of the absorption of benzimidazole on copper surfaces in phosphate solutions

Author(s):  
L. P. Podgornova ◽  
V. F. Shirokov ◽  
L. P. Kazanskii ◽  
Yu. I. Kuznetsov
2019 ◽  
Vol 5 (4) ◽  
pp. 61 ◽  
Author(s):  
Raja ◽  
Esquenazi ◽  
Jones ◽  
Li ◽  
Brinson ◽  
...  

In this work, as-received HiPCO single walled carbon nanotubes (SWCNTs) are incorporated in a controllable manner at various concentrations into Cu-SWCNT composites via electroless plating, by varying the related reaction times, with polyethylene glycol (PEG) used as a dispersing agent. The resultant samples were analyzed using scanning electron microscopy (SEM) for morphology assessment, energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) for elemental analysis, X-ray diffraction (XRD) for the assessment of crystal phase identification, and Raman spectroscopy for the confirmation of the presence of the incorporated SWCNTs. The Cu-SWCNT composites were found to contain carbon, catalytic iron (associated with the raw, as-received SWCNTs), oxygen, and copper; the latter was found to be inversely proportional to carbon and iron contents. The oxygen (associated with both the SWCNT defect sites and oxidized copper surfaces) remained more or less constant regardless of the proportion of SWCNTs in the composites. The Raman IG:ID ratio remains within the experimental error constant, indicating that the electroless deposition does not have a deleterious effect on the SWCNTs. At short deposition times, SEM revealed a relatively dense structure comprising a distinctive fibrous morphology, suggestive of an underlying SWCNT substrate coated with copper; however, with increasing deposition, a more porous morphology is observed. The size of the granular particles increases up until 10 min of reaction, after which time it remains unchanged.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7417
Author(s):  
Carlos Cevallos-Morillo ◽  
Pablo Cisneros-Pérez ◽  
Roxana Llive ◽  
Marvin Ricaurte ◽  
Carlos Reinoso ◽  
...  

Croton lechleri, commonly known as Dragon’s blood, is a tree cultivated in the northwest Amazon rainforest of Ecuador and Peru. This tree produces a deep red latex which is composed of different natural products such as phenolic compounds, alkaloids, and others. The chemical structures of these natural products found in C. lechleri latex are promising corrosion inhibitors of admiralty brass (AB), due to the number of heteroatoms and π structures. In this work, three different extracts of C. lechleri latex were obtained, characterized phytochemically, and employed as novel green corrosion inhibitors of AB. The corrosion inhibition efficiency (IE%) was determined in an aqueous 0.5 M HCl solution by potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopy, measuring current density and charge transfer resistance, respectively. In addition, surface characterization of AB was performed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy techniques. Chloroform alkaloid-rich extracts resulted in IE% of 57% at 50 ppm, attributed to the formation of a layer of organic compounds on the AB surface that hindered the dezincification process. The formulation of corrosion inhibitors from C. lechleri latex allows for the valorization of non-edible natural sources and the diversification of the offer of green corrosion inhibitors for the chemical treatment of heat exchangers.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1946 ◽  
Author(s):  
Przemysław Kwolek ◽  
Barbara Kościelniak ◽  
Magdalena Wytrwal-Sarna

The objective of this work was to test vanadium isopolyoxoanions as potential corrosion inhibitors of the intermetallic phase Al2Cu in sulfuric acid solutions at pH = 1.3 and 2.5. The intermetallic was melted in an electric arc furnace. Its phase composition was confirmed using X-ray diffraction, light microscopy, and differential scanning calorimetry. Then Al2Cu corrosion kinetics was studied. Chemical composition of the solution after corrosion was determined using inductively coupled plasma-optical emission spectroscopy. The surface of corroded specimens was analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy. Subsequent electrochemical studies involved determination of open-circuit potential, electrochemical impedance spectra, and polarization curves. It was found that the Al2Cu phase corrodes selectively and vanadium isopolyoxoanions increase this process both at pH = 1.3 and 2.5 with two exceptions. Corrosion inhibition was observed for 100 and 200 mM of Na3VO4 at pH 1.3, with inhibition efficiency 78% and 62% respectively, due to precipitation of V2O5.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1269
Author(s):  
Yuri Makarychev ◽  
Natalia Gladkikh ◽  
Ivan Arkhipushkin ◽  
Yuri Kuznetsov

This article proposes a method for obtaining stable hydrophobic inhibitor dispersions, where the micelle core contains a hydrophobic solvent, a corrosion inhibitor and an organosilane. Such compositions can be used as polymer-type corrosion inhibitors for low-carbon steel. Using electrochemical methods, corrosion tests and X-ray photoelectron spectroscopy, features of the formation of polymeric layers of hydrophobic organosilicon dispersions were studied.


2004 ◽  
Vol 449-452 ◽  
pp. 1025-1028 ◽  
Author(s):  
Rong Gang Wang ◽  
Mitsuo Kido ◽  
Fumihiro Suzumura

The adsorptive on pure iron and copper surfaces was investigated with angle resolved X-ray photoelectron spectroscopy (ARXPS) and atomic force microscope (AFM). Organic species and a little amount of water (micro-droplets surrounded with nanometer-scale film-like-domains) were detected on the oxidized and/or hydrated metallic surfaces for both specimens and their minute structures were discussed.


2017 ◽  
Vol 121 (5) ◽  
pp. 2675-2682 ◽  
Author(s):  
Mark Olschewski ◽  
René Gustus ◽  
Oliver Höfft ◽  
Abhishek Lahiri ◽  
Frank Endres

CORROSION ◽  
10.5006/3651 ◽  
2020 ◽  
Vol 76 (12) ◽  
Author(s):  
F. Montes ◽  
A. Frontini ◽  
M. Vázquez ◽  
M.B. Valcarce

Silicate ions were tested as corrosion inhibitors for construction steel using concrete pore simulating solutions contaminated with chloride ions. The results were compared to those from solutions with no silicate and with no silicate and no chloride ions. The evaluation included typical electrochemical techniques such as cyclic voltammetry, polarization curves, and weight loss evaluation after a 60 day immersion. Surface analysis was undertaken using micro-Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). Polarization curves showed no sign of pitting and low corrosion current densities if silicate ions were present, even when chloride ions were also in the system. In parallel, no localized attack was observed after 60 days of immersion in solutions containing an inhibitor/chloride = 1 ratio. Cyclic voltammograms and XPS spectra indicated that the presence of silicate ions affects the composition and thickness of the passive film: the film becomes thinner and contains more Fe(II) species. All of the results showed that silicate ions act as promising inhibiting agents.


2018 ◽  
Vol 47 (2) ◽  
pp. 140-145 ◽  
Author(s):  
József Hlinka ◽  
Zoltán Weltsch

The effect of laser treatment on copper irradiated by a Nd:YAG laser was investigated by optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Wettability measurements were taken previously on the laser treated samples and the results showed interesting changes. In this paper the surfaces of the copper samples were analyzed with optical microscopy, SEM, XPS and AES in four laser power parameter. The SEM observations demonstrate that in this laser beam power range the level of surface modification is not affected by the laser power. According to the XPS and AES results we can say that the measurements do not show exact connections between the oxidation state and the wettability of the laser treated surface.


Sign in / Sign up

Export Citation Format

Share Document