Inhibitory effect of ipriflavone on osteoclast-mediated bone resorption and new osteoclast formation in long-term cultures of mouse unfractionated bone cells

1993 ◽  
Vol 53 (3) ◽  
pp. 206-209 ◽  
Author(s):  
Kohei Notoya ◽  
Keiji Yoshida ◽  
Shigehisa Taketomi ◽  
Iwao Yamazaki ◽  
Masayoshi Kumegawa
2019 ◽  
Vol 6 (6) ◽  
pp. 190360 ◽  
Author(s):  
Liuliu Yan ◽  
Lulu Lu ◽  
Fangbin Hu ◽  
Dattatrya Shetti ◽  
Kun Wei

Osteoclasts are multinuclear giant cells that have unique ability to degrade bone. The search for new medicines that modulate the formation and function of osteoclasts is a potential approach for treating osteoclast-related bone diseases. Piceatannol (PIC) is a natural organic polyphenolic stilbene compound found in diverse plants with a strong antioxidant and anti-inflammatory effect. However, the effect of PIC on bone health has not been scrutinized systematically. In this study, we used RAW264.7, an osteoclast lineage of cells of murine macrophages, to investigate the effects and the underlying mechanisms of PIC on osteoclasts. Here, we demonstrated that PIC treatment ranging from 0 to 40 µM strongly inhibited osteoclast formation and bone resorption in a dose-dependent manner. Furthermore, the inhibitory effect of PIC was accompanied by the decrease of osteoclast-specific genes. At the molecular level, PIC suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK1/2), NF-κB p65, IκBα and AKT. Besides, PIC promoted the apoptosis of mature osteoclasts by inducing caspase-3 expression. In conclusion, our results suggested that PIC inhibited RANKL-induced osteoclastogenesis and bone resorption by suppressing MAPK, NF-κB and AKT signalling pathways and promoted caspase3-mediated apoptosis of mature osteoclasts, which might contribute to the treatment of bone diseases characterized by excessive bone resorption.


Author(s):  
J. C. Boeyens ◽  
W-H. Chua ◽  
M.C. Kruger ◽  
A.M. Joubert ◽  
M. Coetzee

This study investigated the effects of polyunsaturated fatty acids on osteoclast formation and bone resorption in RAW 264.7 murine pre-osteoclasts. Data obtained suggests an inhibitory effect of these compounds on osteoclastogenesis and bone resorption in the cell line tested.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 629-629 ◽  
Author(s):  
Suzanne Lentzsch ◽  
Gulsum Anderson ◽  
Noriyoshi Kurihara ◽  
Tadashi Honjo ◽  
Judith Anderson ◽  
...  

Abstract CC-4047 (Actimid) is an immunomodulatory analog of thalidomide that has stronger anti-myeloma and anti-angiogenic activity than thalidomide, but its effects on human osteoclast lineage are unknown. Early osteoclast progenitors are of hematopoietic origin and progressively differentiate into mature bone resorbing multinucleated osteoclasts. We investigated the effects of CC-4047 and thalidomide on human osteoclastogenesis, using in vitro receptor activator of NFκ-B ligand/M-CSF stimulated culture system of bone marrow cells. Three weeks of treatment of primary bone marrow cultures with 100 μM CC-4047 decreased osteoclast formation accompanied by complete inhibition of bone resorption. Interestingly, osteoclast formation was also inhibited when cultures were treated with CC-4047 only for the first week (90% inhibition). In contrast, inhibitory effect was greatly diminished when the drug was given for only the last week (25% inhibition), indicating that inhibition of osteoclast formation is an early event. The inhibitory effect of CC-4047 on osteoclastogenesis was not induced by cell death, but by a shift of lineage commitment to granulocyte-CFU at the expense of GM-CFU that are osteoclast progenitors. Further studies revealed that this shift is mediated through down regulation of the transcription factor PU.1, which is critical for early osteoclast formation. In contrast to CC-4047, thalidomide was a significantly less potent inhibitor of osteoclast formation and bone resorption. These results provide the first evidence that CC-4047 blocks osteoclast differentiation at the early phase of osteoclastogenesis. Therefore, CC-4047 might be a valuable drug targeting both the tumor and osteoclastic activity in patients with multiple myeloma and potentially other diseases associated with the development of osteolytic lesions.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Julie Bernardor ◽  
Sacha Flammier ◽  
Bruno Ranchin ◽  
Segolene Gaillard ◽  
Diane Platel ◽  
...  

Abstract Background and Aims Active vitamin D analogs and calcimimetics are cornerstones for managing secondary hyperparathyroidism (SHPT) in chronic kidney disease (CKD). Their direct effects on bone cells remain to be determined. Method Peripheral blood mononuclear cells (PBMCs) of 19 pediatric CKD patients and 6 healthy donors (HD) were differentiated into osteoclasts in presence of M-CSF and RANKL. Effect of combined or single treatment with active vitamin D (1.25-D) and/or the calcimimetic KP2326 were evaluated onto osteoclast differentiation and osteoclast mediated bone resorption. Results 1.25-D inhibited osteoclastic differentiation, a significant resistance to 1.25-D was observed when CKD worsens. A significant albeit less important inhibitory effect of KP2326 on osteoclastic differentiation was also found both in cells derived from HD and CKD patients, through an activation of the Erk pathway. This inhibitory effect was not modified by CKD stage. Combinatorial treatment with 1.25-D and KP2326 did not result in synergistic effects. Last, KP2326 significantly inhibited human osteoclast-mediated bone resorption. Conclusion Both 1.25-D and KP2326 inhibit osteoclastic differentiation, however to a different extent. Whilst 1.25-D has no significant effect on bone resorption, KP2326 inhibits bone resorption. Recent data showed that calcimimetics also have a direct anabolic effect on bone, through the stimulation of osteoblastic differentiation and mineralization in human mesenchymal stem cells in vitro. All these results provide a strong rationale for a global positive effect of calcimimetics on bone remodeling. Calcimimetics also significantly decrease FGF23 levels. In the setting of global systematic deleterious effects of high FGF23 levels in CKD, and keeping in mind that active vitamin D analogs stimulate FGF 23 production, all these data could favor the use of decreased doses of 1.25-D with low-doses of calcimimetics in SHPT in dialysis, the combination of these two therapies already being proposed in the 2017 K-DIGO guidelines.


2020 ◽  
Author(s):  
Tao Huang ◽  
Congyun Zhao ◽  
Yi Zhao ◽  
Yuan Zhou ◽  
Lei Wang ◽  
...  

Abstract To investigate the suppressive function of LY900009, a potent-secretase inhibitor, on RANKL-induced osteoclastogenesis. The cytotoxicity of LY900009 was evaluated. The suppressive effect and possible molecular mechanism of LY900009 on RANKL-induced osteoclastogenesis was evaluated both in vitro and in vivo. The IC50 of LY900009 was 2.93 mM. LY900009 treatment at different doses (100 nM, 200 nM, and 400 nM) effectively reduced osteoclast formation (number and arear) in a dose-dependent manner. The qPCR result shows that LY900009 attenuates RANKL-induced osteoclast formation and NFATc1 protein expression. The in vivo experiments demonstrated the inhibitory effect of LY900009 on LPS-induced bone resorption. LY900009 could potently inhibit osteoclastogenesis and bone resorption by down-regulating Notch/MAPK/Akt - mediated NFATc1 reduction in vitro. In accordance with the in vitro observations, we confirmed that LY900009 attenuated LPS-induced osteolysis in mice. In conclusion, our findings indicate that Notch was a potential therapeutic target which could be used for osteolytic diseases treatment.


Author(s):  
Fanzi Wu ◽  
Boer Li ◽  
Xuchen Hu ◽  
Fanyuan Yu ◽  
Yu Shi ◽  
...  

The imbalance between bone formation and bone resorption causes osteoporosis, which leads to severe bone fractures. It is known that increases in osteoclast numbers and activities are the main reasons for increasing bone resorption. Although extensive studies have investigated the regulation of osteoclastogenesis of bone marrow macrophages (BMMs), new pharmacological avenues still need to be unveiled for clinical purpose. Wnt ligands have been widely demonstrated as stimulators of bone formation; however, the inhibitory effect of the Wnt pathway in osteoclastogenesis is largely unknown. Here, we demonstrate that Wnt7b, a potent Wnt ligand that enhances bone formation and increases bone mass, also abolishes osteoclastogenesis in vitro. Importantly, enforced expression of Wnt in bone marrow macrophage lineage cells significantly disrupts osteoclast formation and activity, which leads to a dramatic increase in bone mass. Mechanistically, Wnt7b impacts the glucose metabolic process and AKT activation during osteoclastogenesis. Thus, we demonstrate that Wnt7b diminishes osteoclast formation, which will be beneficial for osteoporosis therapy in the future.


2017 ◽  
Vol 43 (4) ◽  
pp. 1425-1435 ◽  
Author(s):  
Lingbo Kong ◽  
Biao Wang ◽  
Xiaobin Yang ◽  
Hua Guo ◽  
Ke Zhang ◽  
...  

Background/Aims: Osteoporosis is a metabolic bone disorder that tortures about millions of people worldwide. Recent study demonstrated agents derived from picrasma quassioides is a promising drug for targets multiple signaling pathways. However its potential in treatment of bone loss has not been fully understood. Methods: The bone marrow macrophages (BMMs) were cultured and induced with M-CSF and RANKL followed by picrasidine I (PI) treatment. Then the effects of PI on osteoclast formation were evaluated by counting tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. Moreover, effects of PI on bone resorption activity of mature osteoclast were studied through bone resorption pit counting and actin ring structure analysis. Further, the involved potential signaling pathways cross-talking were investigated by performed Western blotting and quantitative real-time PCR examination. Results: Results demonstrated PI strongly inhibited RANKL induced osteoclast formation from its precursors. Mechanistically, the inhibitory effect of PI on osteoclast differentiation was due to the suppression of osteoclastogenic transcription factors, c-Fos and NFATc1. Moreover, PI markedly blocked the RANKL-induced osteoclastogenesis by attenuating MAPKs and NF-κB signaling pathways. In addition, PI decreased the ROS generation in osteoclast and osteoblast. Conclusion: Taken together our data demonstrate that PI has antiosteoclastogenic effect by inhibiting inflammation induced activation of MAPKs, NF-κB and ROS generation followed by suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors.


2021 ◽  
Vol 22 (1) ◽  
pp. 449
Author(s):  
Anke Baranowsky ◽  
Jessika Appelt ◽  
Kristina Tseneva ◽  
Shan Jiang ◽  
Denise Jahn ◽  
...  

Despite modern surgical trauma care, bleeding contributes to one-third of trauma-related death. A significant improvement was obtained through the introduction of tranexamic acid (TXA), which today is widely used in emergency and elective orthopedic surgery to control bleeding. However, concerns remain regarding potential adverse effects on bone turnover and regeneration. Therefore, we employed standardized cell culture systems including primary osteoblasts, osteoclasts, and macrophages to evaluate potential effects of TXA on murine bone cells. While osteoblasts derived from calvarial digestion were not affected, TXA increased cell proliferation and matrix mineralization in bone marrow-derived osteoblasts. Short-term TXA treatment (6 h) failed to alter the expression of osteoblast markers; however, long-term TXA stimulation (10 days) was associated with the increased expression of genes involved in osteoblast differentiation and extracellular matrix synthesis. Similarly, whereas short-term TXA treatment did not affect gene expression in terminally differentiated osteoclasts, long-term TXA stimulation resulted in the potent inhibition of osteoclastogenesis. Finally, in bone marrow-derived macrophages activated with LPS, simultaneous TXA treatment led to a reduced expression of inflammatory cytokines and chemokines. Collectively, our study demonstrates a differential action of TXA on bone cells including osteoanabolic, anti-resorptive, and anti-inflammatory effects in vitro which suggests novel treatment applications.


1985 ◽  
Vol 69 (4) ◽  
pp. 403-411 ◽  
Author(s):  
Keiichi Ohya ◽  
Shoji Yamada ◽  
Rolf Felix ◽  
Herbert Fleisch

1. Bisphosphonates are potent inhibitors of bone resorption and also inhibit prostaglandin (PG) E2 synthesis in bone cells. Therefore we have investigated whether a correlation exists between inhibition of bone resorption and inhibition of PGE2 formation. 2. Initially, bisphosphonates were tested for their effect on the release of [14C]PGE2 from rat calvaria cells labelled with [14C]arachidonic acid and stimulated by bradykinin, thrombin and mechanical manipulation. The effect on [14C]-PGE2 synthesis was not correlated with the known inhibitory activity of bisphosphonates on bone resorption. 3. Mouse calvaria were then treated with epidermal growth factor (EGF) to induce PGE2 synthesis and bone resorption, with or without bisphosphonates. The bisphosphonates either decreased, had no effect or increased PGE2 production, but all inhibited the release of calcium. 4. Finally, the bisphosphonates were given in vivo to mice before explantation of the calvaria. Some of the bisphosphonates decreased the production of PGE2, suggesting that these compounds may have such an effect in vivo. But again no relationship between the effect on PGE2 synthesis and bone resorption was found. 5. Thus, these experiments show the inhibitory effect of bisphosphonates on bone resorption is unlikely to be explained only by their effect on PGE2 synthesis.


Endocrinology ◽  
2021 ◽  
Author(s):  
Bongjin Shin ◽  
Henry C Hrdlicka ◽  
Anne M Delany ◽  
Sun-Kyeong Lee

Abstract The miR-29-3p family (miR-29a, miR-29b, miR-29c) of microRNAs is increased during RANKL-induced osteoclastogenesis. In vivo, activation of a miR-29-3p tough decoy inhibitor (TuD) in LysM-cre expressing cells (myeloid lineage) resulted in mice displaying enhanced trabecular and cortical bone volume, due to decreased bone resorption. Calcitonin receptor (Calcr) is a miR-29 target that negatively regulates bone resorption. CALCR was significantly increased in RANKL-treated miR-29-decoy osteoclasts, and these cells were more responsive to the inhibitory effect of calcitonin on osteoclast formation. Further, cathepsin K (Ctsk), which is critical for resorption, was decreased in miR-29-decoy cells. CALCR is a Gs coupled receptor and its activation raises cAMP levels. In turn, cAMP suppresses cathepsin K, and cAMP levels were increased in miR-29-decoy cells. siRNA-mediated knock down of Calcr in miR-29 decoy osteoclasts allowed recovery of cathepsin K levels in these cells. Overall, using a novel knockin tough decoy mouse model, we identified a new role for miR-29-3p in bone homeostasis. In RANKL-driven osteoclastogenesis, as seen in normal bone remodeling, miR-29-3p promotes resorption. Consequently, inhibition of miR-29-3p activity in the myeloid lineage leads to increased trabecular and cortical bone. Further, this study documents an inter-relationship between CALCR and CTSK in osteoclastic bone resorption, which is modulated by miR-29-3p.


Sign in / Sign up

Export Citation Format

Share Document