Growth and ion uptake ofAgropyron elongatum on saline substrates, as compared with a salt-tolerant variety of hordeum vulgare

1963 ◽  
Vol 18 (1) ◽  
pp. 21-30 ◽  
Author(s):  
H. Greenway ◽  
A. Rogers
1965 ◽  
Vol 18 (4) ◽  
pp. 763 ◽  
Author(s):  
H Greenway

In the main experiment, sodium chloride treatment was imposed on two varieties of H. vulgare during early tillering and continued until grain formation.


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 205 ◽  
Author(s):  
Hao Wang ◽  
Tetsuo Takano ◽  
Shenkui Liu

The improvement and development of saline–alkali land is of great significance for promoting food production and sustainable development. It is necessary to study the mechanism of saline–alkaline tolerance and breed saline–alkaline tolerant crops to improve the utilization of saline–alkali land. For this study, we conducted a three-year pot experiment to screen the saline–alkaline tolerant germplasm of 72 rice genotypes from hundreds of elite cultivars during the whole growth period using a certain proportion of soda saline–alkali soil. The selected salt-tolerant variety was combined with a salt-sensitive variety to analyze the saline–alkaline tolerance mechanism by using the saline–alkaline soil leachate. We eliminated 36 genotypes with low seedling survival rates under salt–alkali stress, and the salt-tolerant Jiudao-66 (D68) variety had a higher survival rate than most varieties. The membership degree of Jiudao-66, according to the salt tolerance index of multiple agronomic traits, is higher than that of 34 varieties, with a higher survival rate except when compared to D36. The survival rate and these salt tolerance indexes of Jiudao-66 were significantly higher than those of Kitaake (salt-sensitive). Under the stress of leachate, the content of proline and soluble sugars in the shoots of Jiudao-66 were higher than that of Kitaake, and the total antioxidant capacity was stronger than that of Kitaake. However, the content of malondialdehyde was lower than that of Kitaake. Additionally, the Na+/K+ ratios in shoots and roots were not significantly differently between Kitaake and Jiudao-66. The results showed that Jiudao-66, as a salt-tolerant variety, is more tolerant to salt and alkali in a near-natural state due to its stronger tolerance of osmotic stress, and it can accumulate more proline and soluble sugars under stress. At the same time, Jiudao-66 also has a stronger antioxidant capacity. Its ion regulation ability has no obvious advantage.


2017 ◽  
Vol 44 (12) ◽  
pp. 1194 ◽  
Author(s):  
Joanne Tilbrook ◽  
Rhiannon K. Schilling ◽  
Bettina Berger ◽  
Alexandre F. Garcia ◽  
Christine Trittermann ◽  
...  

Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250 mM NaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, with some lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+ : Na+ ratios).


1963 ◽  
Vol 16 (3) ◽  
pp. 616 ◽  
Author(s):  
H Greenway

Sodium chloride, at a concentration of 50 m-equiv/l. was applied to substrates with total nutrient concentrations of 0 -4, 1�7, and 17 m-equivjl. Treatment effects were studied over a 7 -day period.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256000
Author(s):  
Jialin Sun ◽  
Shuangnan Li ◽  
Huijuan Guo ◽  
Zhenan Hou

The sensitivity of cotton to salt stress depends on the genotypes and salt types. Understanding the mechanism of ion homeostasis under different salt stresses is necessary to improve cotton performance under saline conditions. A pot experiment using three salt stresses saline stress (NaCl+Na2SO4), alkaline stress (Na2CO3+NaHCO3), and saline-alkaline stress (NaCl+Na2SO4+Na2CO3+NaHCO3) and two cotton varieties (salt-tolerant variety L24 and salt-sensitive variety G1) was conducted. The growth, ion concentrations, and Na+ transport-related gene expression in the cotton varieties were determined. The inhibitory effects of saline-alkaline stress on cotton growth were greater than that of either saline stress or alkaline stress alone. The root/shoot ratio under alkaline stress was significantly lower than that under saline stress. The salt-tolerant cotton variety had lower Na and higher K concentrations in the leaves, stems and roots than the salt-sensitive variety under different salt stresses. For the salt-sensitive cotton variety, saline stress significantly inhibited the absorption of P and the transport of P, K, and Mg, while alkaline stress and saline-alkaline stress significantly inhibited the uptake and transport of P, K, Ca, Mg, and Zn. Most of the elements in the salt-tolerant variety accumulated in the leaves and stems under different salt stresses. This indicated that the salt-tolerant variety had a stronger ion transport capacity than the salt-sensitive variety under saline conditions. Under alkaline stress and salt-alkaline stress, the relative expression levels of the genes GhSOS1, GhNHX1 and GhAKT1 in the salt-tolerant variety were significantly higher than that in the salt-sensitive variety. These results suggest that this salt-tolerant variety of cotton has an internal mechanism to maintain ionic homeostasis.


2021 ◽  
Vol 13 (3) ◽  
pp. 1020-1031
Author(s):  
Jitendra Kumar Sharma ◽  
Monika Sihmar ◽  
Anita Rani Santal ◽  
Nater Pal Singh

Salinity stress affects plant growth and development and underlying metabolisms. To mitigate the effects of the stress, plants responded by changing their physiological and biochemical activities and withstand the stress. The present study aimed to determine barley's (Hordeum vulgare L.)  physiological and biochemical response to salinity stress conditions for 7 days and 14 days. Six barley cultivars (Alfa93, DWRB73, DL88, NB1, NB3, NDB1173) were grown under controlled conditions, and different level of salinity stress was applied. In addition, seedling growth, physiological and biochemical parameters, plant leaves RWC, and electrolyte leakage were analyzed. The overall seedling growth, RWC, and electrolyte leakage in salt susceptible lines Alfa93 and DWRB73 were low than the salt-tolerant barley lines (DL88, NB1, NB3, and NDB1173). Electrolyte leakage was 26.0 and 20.6% in Alfa93 and DWRB73, whereas it was 17.6, 14.6, 15.3, and 10.4% in DL88, NB1, NB3, and NDB1173, respectively at 300 mM salinity stress.  The loss of photosynthetic pigments under salt stress was high in susceptible lines, salinity treated (300 mM NaCl) Alfa93 plants exhibit 49.5% and 59.5% of Chl-a than control plants after 7 and 14 days of treatment, respectively. However, at 300 mM stress level, NB1 (ST) showed less Chl-a loss after 7 days, whereas NDB1173 showed less reduction in Chl-a after 14 days.  Antioxidant enzymes such as SOD, POX, CAT, and APX activities in susceptible line Alfa93 and DWRB73 were lower than tolerant lines. PCA analysis demonstrated a positive correlation between antioxidant enzyme activities and genotypes under salinity stress. PCA analysis described DL88 as the most tolerant, and DWRB73 was the most salt susceptible genotype among the studied barley genotypes. The present findings suggest that barley cultivars' physiological and biochemical activities under salinity stress conditions may be used to screen salt-tolerant crops.


Sign in / Sign up

Export Citation Format

Share Document