Nonsecretion of myeloma protein in spite of an increase in tumor burden by chemotherapy

1991 ◽  
Vol 63 (4) ◽  
pp. 232-233 ◽  
Author(s):  
K. Kubota ◽  
H. Kurabayashi ◽  
E. Kawada ◽  
K. Okamoto ◽  
J. Tamura ◽  
...  
Keyword(s):  
2006 ◽  
Vol 175 (4S) ◽  
pp. 310-310
Author(s):  
Nicholas J. Fitzsimons ◽  
Leon L. Sun ◽  
Thomas J. Polascik ◽  
Vladimir Mouraviev ◽  
Craig F. Donatucci ◽  
...  

2008 ◽  
Vol 109 (Supplement) ◽  
pp. 99-105 ◽  
Author(s):  
Andy J. Redmond ◽  
Michael L. DiLuna ◽  
Ryan Hebert ◽  
Jennifer A. Moliterno ◽  
Rani Desai ◽  
...  

Object Gamma Knife surgery (GKS) improves overall survival in patients with malignant melanoma metastatic to the brain. In this study the authors investigated which patient- or treatment-specific factors influence survival of patients with melanoma brain metastases; they pay particular interest to pre- and post-GKS hemorrhage. Methods Demographic, treatment, and survival data on 59 patients with a total of 208 intracranial metastases who underwent GKS between 1998 and 2007 were abstracted from treatment records and from the Connecticut Tumor Registry. Multivariate analysis was used to identify factors that independently affected survival. Results Survival was significantly better in patients with solitary metastasis (p = 0.04), lesions without evidence of pre-GKS hemorrhage (p = 0.004), and in patients with total tumor volume treated < 4 cm3 (p = 0.02). Intratumoral bleeding occurred in 23.7% of patients pre-GKS. Intratumoral bleeding occurred at a mean of 1.8 months post-GKS at a rate of 15.2%. Unlike the marked effect of pretreatment bleeding, posttreatment bleeding did not independently affect survival. Sex, systemic control, race, metastases location, whole-brain radiation therapy, chemotherapy, history of antithrombotic medications, and cranial surgery had no independent association with survival. Conclusions These data corroborate previous findings that tumor burden (either as increased number or total volume of lesions) at the time of GKS is associated with diminished patient survival in those with intracerebral melanoma metastases. Patients who were noted to have hemorrhagic melanoma metastases prior to GKS appear to have a worse prognosis following GKS compared with patients with nonhemorrhagic metastases, despite similar rates of bleeding pre- and post-GKS treatment. Gamma Knife surgery itself does not appear to increase the rate of hemorrhage.


1964 ◽  
Vol 10 (7) ◽  
pp. 600-605 ◽  
Author(s):  
Donald J Campbell ◽  
Thomas Boenisch

Abstract The change in mobility of an abnormal globulin peak during paper electrophoresis in the presence of DL-penicillamine is the most useful of simple procedures suggested for differentiation between macroglobulin and myeloma protein. However, not all cases indicating macroglobulin by this procedure will correlate with criteria based on ultracentrifuge analysis or antigenic reaction.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A717-A717
Author(s):  
Abigail Overacre-Delgoffe ◽  
Anthony Cillo ◽  
Hannah Bumgarner ◽  
Ansen Burr ◽  
Justin Tometich ◽  
...  

BackgroundColorectal cancer remains one of the most common and deadliest cancers worldwide and effective therapies are lacking. While immunotherapy has revolutionized treatment for many cancers, the overwhelming majority of colorectal cancer patients are non-responsive and the 5-year survival rate for advanced disease is <20%. Immunotherapeutic response has been associated with select members of the microbiome in melanoma; however, the potential benefit in colorectal cancer and the underlying mechanisms remain unclear. We sought to determine how specific members of the intestinal microbiome affect anti-tumor immunity in colorectal cancer (CRC) in hopes of discovering novel treatments and revealing potential hurdles to current therapeutic response in CRC patients.MethodsWe utilized a carcinogen-induced mouse model of CRC and colonized half of the tumor-bearing mice with Helicobacter hepaticus (Hhep) 7 weeks post AOM. Tumor number was assessed 12 weeks post AOM. We isolated lymphocytes from the lamina propria, colonic epithelium, mesenteric lymph nodes, and tumor(s) to track the spatial and transcriptional Hhep-specific and endogenous immune responses during tumor progression through 5’ single cell RNAseq, flow cytometry, and immunofluorescence. In addition, we utilized 16S sequencing and FISH to track Hhep colonization, location within the colon, and its impact on the surrounding microbiome.ResultsWe have found that rational modification of the microbiome of colon tumor-bearing mice through addition of a single bacteria, Hhep, led to tumor control or clearance and a significant survival advantage. Colonization led to the expansion of the lymphatic network and development of numerous peri- or intra-tumoral tertiary lymphoid structures (TLS) composed of Hhep-specific CD4 T follicular helper cells (TFH) as well as the bacteria itself. This led to an overall ‘heating’ of the tumor, wherein we saw an increase of CD4 T cell infiltration to the tumor core as well as an increase in CD103+ type 1 DC (cDC1) recruitment through increased chemokines such as CCL5 and XCL1. Hhep-specific TFH were both necessary and sufficient to drive TLS formation, increased immune invasion, and anti-tumor immunity.ConclusionsWe have shown that addition of a single bacteria, Hhep, leads to a reduction in CRC tumor burden or clearance through lymphatic expansion, TLS formation, and remodeling of the tumor microenvironment, and that Hhep-specific T cells are required for tumor control. These studies suggest that rational modification of the microbiome and microbiome-specific T cells can positively impact anti-tumor immunity and may represent a unique immunotherapeutic target to turn resistant tumors into responsive tumors.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii75-ii75
Author(s):  
Thais Sabedot ◽  
Michael Wells ◽  
Indrani Datta ◽  
Tathiane Malta ◽  
Ana Valeria Castro ◽  
...  

Abstract Adult diffuse gliomas are central nervous system (CNS) tumors that arise from the malignant transformation of glial cells. Nearly all gliomas will recur despite standard treatment however, current histopathological grading fails to predict which of them will relapse and/or progress. The Glioma Longitudinal AnalySiS (GLASS) consortium is a large-scale collaboration that aims to investigate the molecular profiling of matched primary and recurrent glioma samples from multiple institutions in order to better understand the dynamic evolution of these tumors. At this time, the cohort comprises 946 samples across 11 institutions and among those, 864 have DNA methylation data available. The current molecular classification based on 7 subtypes published by TCGA in 2016 was applied to the dataset. Among the IDH wildtype tumors, 33% (16/49) of the patients showed a change of subtype upon recurrence, whereas most of them (9/16) were Classic-like at the primary stage but changed to either Mesenchymal-like or PA-like at the recurrent level. Among the IDH mutant tumors, 15% (22/142) showed a change of subtype at recurrent stage, in which 16 out of 22 progressed from G-CIMP-high to G-CIMP-low. Although some tumors progressed to a different subtype upon recurrence, an unsupervised analysis showed that the samples tend to cluster by patient instead of by subtype. By estimating the copy number alterations of these tumors using DNA methylation, the overall copy number profile of the recurrent samples remains similar to their primary counterpart. From this initial analysis using epigenomic data, we were able to characterize some aspects of glioma evolution and how the DNA methylation is associated with the progression of these tumors to different subtypes. These findings corroborate the importance of epigenetics in gliomas and can potentially lead to the identification of new biomarkers that can reflect tumor burden and predict its development.


2021 ◽  
Vol 9 (3) ◽  
pp. e002096
Author(s):  
Simon Gebremeskel ◽  
Adam Nelson ◽  
Brynn Walker ◽  
Tora Oliphant ◽  
Lynnea Lobert ◽  
...  

BackgroundOncolytic viruses reduce tumor burden in animal models and have generated promising results in clinical trials. However, it is likely that oncolytic viruses will be more effective when used in combination with other therapies. Current therapeutic approaches, including chemotherapeutics, come with dose-limiting toxicities. Another option is to combine oncolytic viruses with immunotherapeutic approaches.MethodsUsing experimental models of metastatic 4T1 breast cancer and ID8 ovarian peritoneal carcinomatosis, we examined natural killer T (NKT) cell-based immunotherapy in combination with recombinant oncolytic vesicular stomatitis virus (VSV) or reovirus. 4T1 mammary carcinoma cells or ID8 ovarian cancer cells were injected into syngeneic mice. Tumor-bearing mice were treated with VSV or reovirus followed by activation of NKT cells via the intravenous administration of autologous dendritic cells loaded with the glycolipid antigen α-galactosylceramide. The effects of VSV and reovirus on immunogenic cell death (ICD), cell viability and immunogenicity were tested in vitro.ResultsVSV or reovirus treatments followed by NKT cell activation mediated greater survival in the ID8 model than individual therapies. The regimen was less effective when the treatment order was reversed, delivering virus treatments after NKT cell activation. In the 4T1 model, VSV combined with NKT cell activation increased overall survival and decreased metastatic burden better than individual treatments. In contrast, reovirus was not effective on its own or in combination with NKT cell activation. In vitro, VSV killed a panel of tumor lines better than reovirus. VSV infection also elicited greater increases in mRNA transcripts for proinflammatory cytokines, chemokines, and antigen presentation machinery compared with reovirus. Oncolytic VSV also induced the key hallmarks of ICD (calreticulin mobilization, plus release of ATP and HMGB1), while reovirus only mobilized calreticulin.ConclusionTaken together, these results demonstrate that oncolytic VSV and NKT cell immunotherapy can be effectively combined to decrease tumor burden in models of metastatic breast and ovarian cancers. Oncolytic VSV and reovirus induced differential responses in our models which may relate to differences in virus activity or tumor susceptibility.


Sign in / Sign up

Export Citation Format

Share Document