A desk computer program for the calculation of rate constants

1984 ◽  
Vol 26 (1-2) ◽  
pp. 159-165
Author(s):  
F. Gaizer ◽  
Gy. Bazsa ◽  
A. Puskás ◽  
I. Horváth
1985 ◽  
Vol 87 ◽  
pp. 13-20 ◽  
Author(s):  
V. Cerdá ◽  
J.M. Estela ◽  
R. Jara ◽  
J. Lumbiarres

1990 ◽  
Vol 270 (3) ◽  
pp. 825-828 ◽  
Author(s):  
R Varón ◽  
B H Havsteen ◽  
M García ◽  
F García Cánovas ◽  
J Tudela

A versatile computer program with an easy input method has been developed for the construction of the terms in kinetic equations of enzyme reactions. It allows the expression of the time-dependence of the concentrations of all of the species involved as functions of the kinetic parameters. The mathematical theory used in this paper, the program and examples of its use have been deposited as Supplementary Publication SUP 50159 (41 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1990) 265, 5.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 635-641
Author(s):  
MN Hamers ◽  
AA Bot ◽  
RS Weening ◽  
HJ Sips ◽  
D Roos

A mutant strain of Escherichia coli (E. coli ML-35) was used to follow the kinetics of phagocytosis, perforation of the bacterial cell envelope, and inactivation of bacterial proteins by human neutrophils. This particular E. coli mutant strain has no lactose permease, but constitutively forms the cytoplasmic enzyme beta-galactosidase. This implies that the artificial substrate ortho-nitrophenyl-beta-D- galactopyranoside cannot reach the beta-galactosidase unless the bacterial cell envelope has been perforated. Thus, the integrity of the E. coli envelope can be measured simply by the activity of beta- galactosidase with this substrate. Indeed, ingestion of E. coli ML-35 by human neutrophils was followed by perforation of the bacteria (increase in beta-galactosidase activity). Subsequently, the beta- galactosidase activity decreased due to inactivation of the enzyme. With a simple mathematical model and a curve-fitting computer program, we have determined the first-order rate constants for phagocytosis, perforation, and beta-galactosidase inactivation. With 32 normal donors, we found an interdonor variation in these rate constants of 20% to 30% (SD) and an assay variance of 5%. The perforation process closely correlated with the loss of colony-forming capacity of the bacteria. This new assay measures phagocytosis and killing in a fast, simple, and accurate way; it is not hindered by extracellular bacteria. Moreover, this method also measures the postkilling event of inactivation of a bacterial protein, which permits a better detection of neutrophils deficient in this function. The assay can also be used for screening neutrophil functions without the use of a computer program. A simple calculation suffices to detect neutrophil abnormalities. Neutrophils from patients with chronic granulomatous disease (CGD) showed an impaired rate of perforation and thus also of inactivation. Neutrophils from myeloperoxidase-deficient patients or from a patient with the Chediak-Higashi syndrome only showed a retarded inactivation of beta-galactosidase, but normal ingestion and perforation. The role of myeloperoxidase in the killing process is discussed. Although myeloperoxidase does not seem to be a prerequisite for perforation, it probably plays a role in bacterial destruction by normal cells, because the inactivation of bacterial proteins seems strictly myeloperoxidase dependent.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 635-641 ◽  
Author(s):  
MN Hamers ◽  
AA Bot ◽  
RS Weening ◽  
HJ Sips ◽  
D Roos

Abstract A mutant strain of Escherichia coli (E. coli ML-35) was used to follow the kinetics of phagocytosis, perforation of the bacterial cell envelope, and inactivation of bacterial proteins by human neutrophils. This particular E. coli mutant strain has no lactose permease, but constitutively forms the cytoplasmic enzyme beta-galactosidase. This implies that the artificial substrate ortho-nitrophenyl-beta-D- galactopyranoside cannot reach the beta-galactosidase unless the bacterial cell envelope has been perforated. Thus, the integrity of the E. coli envelope can be measured simply by the activity of beta- galactosidase with this substrate. Indeed, ingestion of E. coli ML-35 by human neutrophils was followed by perforation of the bacteria (increase in beta-galactosidase activity). Subsequently, the beta- galactosidase activity decreased due to inactivation of the enzyme. With a simple mathematical model and a curve-fitting computer program, we have determined the first-order rate constants for phagocytosis, perforation, and beta-galactosidase inactivation. With 32 normal donors, we found an interdonor variation in these rate constants of 20% to 30% (SD) and an assay variance of 5%. The perforation process closely correlated with the loss of colony-forming capacity of the bacteria. This new assay measures phagocytosis and killing in a fast, simple, and accurate way; it is not hindered by extracellular bacteria. Moreover, this method also measures the postkilling event of inactivation of a bacterial protein, which permits a better detection of neutrophils deficient in this function. The assay can also be used for screening neutrophil functions without the use of a computer program. A simple calculation suffices to detect neutrophil abnormalities. Neutrophils from patients with chronic granulomatous disease (CGD) showed an impaired rate of perforation and thus also of inactivation. Neutrophils from myeloperoxidase-deficient patients or from a patient with the Chediak-Higashi syndrome only showed a retarded inactivation of beta-galactosidase, but normal ingestion and perforation. The role of myeloperoxidase in the killing process is discussed. Although myeloperoxidase does not seem to be a prerequisite for perforation, it probably plays a role in bacterial destruction by normal cells, because the inactivation of bacterial proteins seems strictly myeloperoxidase dependent.


1985 ◽  
Vol 169 ◽  
pp. 397-402 ◽  
Author(s):  
J. Cantallops ◽  
J.M. Estela ◽  
V. Cerdá

1989 ◽  
Vol 258 (2) ◽  
pp. 381-387 ◽  
Author(s):  
C T Zimmerle ◽  
C Frieden

A highly flexible computer program written in FORTRAN is presented which fits computer-generated simulations to experimental progress-curve data by an iterative non-linear weighted least-squares procedure. This fitting procedure allows kinetic rate constants to be determined from the experimental progress curves. Although the numerical integration of the rate equations by a previously described method [Barshop, Wrenn & Frieden (1983) Anal. Biochem. 130, 134-145] is used here to generate predicted curves, any routine capable of the integration of a set of differential equations can be used. The fitting program described is designed to be widely applicable, easy to learn and convenient to use. The use, behaviour and power of the program is explored by using simulated test data.


1995 ◽  
Vol 32 (8) ◽  
pp. 115-123 ◽  
Author(s):  
K. F. Janning ◽  
P. Harremoës ◽  
M. Nielsen

Experimental data in forms of vertical concentration profiles has been provided from a full scale submerged denitrification filter with biocarbone as filter material. Denitrification rates were determined in full scale under different loads of nitrate and methanol with methanol in excess. Vertical concentration profiles of nitrate and methanol have verified kinetics in the half-order region with removal rate constants in the range of k0.5A = 0.13-0.21 g N0.5 m−0.5 d−1 (0.5 order for partial penetration in the 0 order intrinsic concentration range). The removal rates found are low with methanol as carbon source as compared to information from literature. The experience with detailed mathematical modelling is that “best fit” can be achieved by different sets of parameters with the computer program AQUASIM. Full scale experiments have to be supplemented with dedicated laboratory scale experiments to determine all important parameters.


Sign in / Sign up

Export Citation Format

Share Document