Experimental studies on models of the inside of a nuclear reactor

Meccanica ◽  
1972 ◽  
Vol 7 (1) ◽  
pp. 61-62
Author(s):  
A. Mondina ◽  
M. Falco
Author(s):  
Weiqiang Zhang ◽  
Huixiong Li ◽  
Qing Zhang ◽  
Yifang Zhang ◽  
Tai Wang

The investigation on the heat transfer characteristics for supercritical pressure water (SCW) is of value for the development of the supercritical water-cooled nuclear reactor (SCWR). As an important heat transfer enhancement element, heat transfer for SCW in internally-ribbed tubes was still not solved, though lots of experimental studies have been published and a great many heat transfer correlations were proposed. This paper presented an analysis of heat transfer in the internally-ribbed tubes, through comparing heat transfer correlations for SCW gained from different internally-ribbed tubes under the same operating condition. It was found that all existing heat transfer correlations reported could not been well applied for various internally-ribbed tubes with large deviation between prediction results and experimental values, because rib geometry had a great influence on heat transfer of internally-ribbed tubes. On the basis of experimental data collected from open literature for internally-ribbed tubes, a new general calculation correlation of heat transfer coefficient for SCW was developed for various internally-ribbed tubes by combining an optimized empirical correlation for vertically-upward smooth tubes and four dimensionless numbers of rib geometry. The results show that the calculated values of the new present correlation is in reasonable agreement with available experimental data collected. Moreover, the new correlation was verified well by experiment data of two new-type internally-ribbed tubes performed beyond the above experimental database.


2020 ◽  
Vol 979 ◽  
pp. 137-141
Author(s):  
K. Jayakumar ◽  
K. Akash Koundinya ◽  
T. Jayakumar ◽  
M. Harshal ◽  
G. Gopinath

Monel K-500 is a Nickel based super alloy which have superlative properties such as high strength, resistance to corrosion, retention of mechanical properties at service temperature and structural stability. It finds wide application in aerospace application, nuclear reactor, gas turbines, submarines, combustion engine exhaust valve, petro chemical components, heat exchanger, etc. However, during machining of super alloys, difficulties are there due to its low thermal conductivity and work hardening effect. Challenges in conventional machining can be minimized by using suitable machining as well as process parameters. Among the different machining processes, not much work has been initiated on drilling of above super alloys. Normally, drilled holes are used in screws, bolts, shafts, steam pipes, fitting of furniture and other equipments. By considering the applications and difficulties in machining of super alloys, drilling experiment is selected on Monel K-500. Experiments were conducted as per Taguchi’s L9 orthogonal array using process parameters such as different drill tool material, drilling speed, feed and cutting fluids and Surface roughness and MRR values were measured as output responses. Effect of selected process parameters on the above machinability responses were analyzed. Optimum process parameters were identified to improve the machinability of Monel K-500.


Author(s):  
Stanislav Ten ◽  
Andrey Zagrebayev ◽  
Victor Pilyugin

For the most part, the solution of the problem of visualizing any data depends on the structure, size and type of data provided. In this work, the data are archives of RBMK or VVER reactors provided from different control and protection systems of the reactors. Despite the fact that several visualization complexes have already been developed, the visualization task is still relevant due to the necessity to improve the quality of monitoring systems and operational personnel. This paper describes the mathematical apparatus for express analysis of the archive of operational parameters of a VVER nuclear reactor. The developed software makes it possible to carry out express analysis of the VVER reactor archive in terms of plotting altitude or time graphs, as well as using dynamic visualization using the Chernoff faces method, which in turn can provide scientific and practical benefits due to improvement the work quality of operating personnel and conduction analysis of situations that requires additional attention and more detailed analysis. Also, the fundamental concept of this work is the method of scientific visualization, which is widely used in various theoretical and experimental studies. It can be said that the main aim of scientific visualization is to make invisible visible.


Author(s):  
Nicholas Simos ◽  
Harold Kirk ◽  
Hans Ludewig ◽  
Peter Thieberger ◽  
W.-T. Weng ◽  
...  

Intense beams for muon colliders and neutrino facilities require high-performance target stations of 1–4 MW proton beams. The physics requirements for such a system push the envelope of our current knowledge as to how materials behave under high-power beams for both short and long exposure. The success of an adopted scheme that generates, captures and guides secondary particles depends on the useful life expectancy of this critical system. To address the key technical challenges around the target of these initiatives, a set of experimental studies have either been initiated or being planned that include (a) the response and survivability of target materials intercepting intense, energetic protons, (b) the integrity of beam windows for target enclosures, (c) the effects of irradiation on the long-term integrity of candidate target and focusing element materials, and (d) the performance of the integrated system and the assessment of its useful life. This paper presents an overview of what has been achieved during the various phases of the experimental effort including a tentative plan to continue the effort by expanding the material matrix. The paper also attempts to interpret what the experimental results are revealing and seeks for ways to extrapolate to the required intensities and anticipated levels of irradiation and it discusses the feasibility of the proposed approaches to achieving such high-performance systems. Further it explores the connection of accelerator target systems with reactor systems in order to utilize experience data that the nuclear reactor sector has acquired over the years.


1983 ◽  
Vol 63 (2) ◽  
pp. 197-208 ◽  
Author(s):  
M. Broc ◽  
J. Sannier ◽  
G. Santarini

2020 ◽  
Vol 225 ◽  
pp. 08007
Author(s):  
Q. Huang ◽  
J. Jiang ◽  
Y. Q. Deng

This paper presents on the results of radiation studies for three commonly used wireless sensor nodes based on the following protocols: ZigBee, WirelessHART, ISA 100.11a, and network devices built with commercial off-the-shelf (COTS) components. The level of radiation considered is at par with that experienced at Fukushima Daiichi Nuclear Power Plant after the accident. An experimental setup is developed to monitor behaviors of each wireless device and network real-time under the 60Co gamma radiator at The Ohio State University Nuclear Reactor Lab (OSU-NRL). The experimental results have indicated that the performance of the communication channels and wireless signal parameters do not degrade significant under such radiation. However, all the tested devices and networks can only survive for several hours under the high dose rate condition (20 K Rad/h). The results of these experimental studies have provided useful references to those who design and manufacture COTS-based wireless monitoring systems for use in high level radiation environments.


2019 ◽  
Vol 2019 (2) ◽  
pp. 117-127
Author(s):  
Sergej Mihajlovich Dmitriev ◽  
Alexander Viktorovich Mamaev ◽  
Renat Ramil’yevich Rayzapov ◽  
Aleksey Yevgen’yevich Sobornov ◽  
Andrey Valer’yevich Kotin ◽  
...  

Author(s):  
Dalin Zhang ◽  
Jing Chen ◽  
Ping Song ◽  
Shibao Wang ◽  
Xin'an Wang ◽  
...  

Sodium-cooled Fast Reactor (SFR) is the most promising reactor among the six Gen-IV nuclear reactor systems. The coolant of SFR is liquid metal which has very different heat transfer characteristics from conventional fluids. The study on heat transfer characteristics of the liquid metal sodium at single-phase and two-phase has not only great academic but also application meanings for SFRs design and safety analysis. Xi’an Jiaotong University (XJTU) performed comprehensive studies from the theoretical and experimental aspects. In the theoretical studies, the main focuses are paid on the sodium single-phase heat transfer flowing in rod bundles, incipient boiling, two-phase thermal-hydraulic and critical heat flux (CHF). The experimental research on the flow and heat transfer characteristics of sodium in annuli is performed on XJTU single-phase sodium loop and two-phase boiling sodium loop, in which the single-phase friction and Nu correlations, the incipient boiling superheat (IBS) correlations, the two-phase friction multiplier factor and the heat transfer coefficient of sodium boiling are obtained. In this paper, the established theoretical models and the experimental studies for the single-phase heat transfer and the IBS in the annuli or the pin bundles are presented. The theoretical models are validated by the experimental data, and the comparison shows good agreement.


Sign in / Sign up

Export Citation Format

Share Document