Simple one-dimensional interaction systems with superexponential relaxation times

1995 ◽  
Vol 80 (3-4) ◽  
pp. 545-563 ◽  
Author(s):  
Andrei Toom
VLSI Design ◽  
1998 ◽  
Vol 6 (1-4) ◽  
pp. 155-160
Author(s):  
A. M. Anile ◽  
O. Muscato ◽  
S. Rinaudo ◽  
P. Vergari

Recent advances in technology leads to increasing high speed performance of submicrometer electron devices by the scaling of both process and geometry. In order to aid the design of these devices it is necessary to utilize powerful numerical simulation tools. In an industrial environment the simulation codes based on the Drift-Diffusion models have been widely used. However the shrinking dimension of the devices causes the Drift-Diffusion based simulators to become less accurate. Then it is necessary to utilize more refined models (including higher order moments of the distribution function) in order to correctly predict the behaviour of these devices. Several hydrodynamical models have been considered as viable simulation tools. It is possible to discriminate among the several hydrodynamical models on the basis of their results on the output characteristics of the electron device which are measurable (I-V curves). We have analyzed two classes of hydrodynamical models: i) HFIELDS hydrodynamical models and HFIELDS drift-diffusion model; ii) self-consistent extended hydrodynamical models with relaxation times determined from Monte Carlo simulations.


Internal images of structured objects may be obtained with n.m.r. by labelling component parts with different magnetic field strengths and therefore recognizably different n.m.r. frequencies. A linear field gradient generates a one-dimensional projection of nuclear density and a variety of techniques are employed to manipulate this one-dimensional probe to yield internal images in two and three dimensions. In the past few years, n.m.r. imaging, sometimes also called zeugmatography or spin mapping, has been applied progressively to provide proton images of small phantoms, fruit, vegetables and small animals, and finally to in vivo imaging of the human body; it promises to provide a valuable means of interior investigation of intact biological systems generally. For medical imaging the method is non-invasive, does not use ionizing radiations, appears to be without hazard and penetrates bony cavities without attenuation. Furthermore, other n.m.r. parameters, for example, relaxation times and fluid flow, may also be mapped; there is evidence that the relaxation times from tumours are significantly longer than those from corresponding normal tissue. Effort to date has mostly been concentrated on proton n.m.r., but some work has been done with other nuclei. Three examples are shown of n.m.r. images of intact biological systems: a fruit, an animal and a human system. The discussion includes the quantitative nature of the images, tissue discrimination, the relation between resolution in the image and image acquisition time, attenuation and phase shift of the r.f. field in the biological tissue, and magnets suitable for n.m.r. imaging. In principle, all conventional n.m.r. techniques can be combined with n.m.r. imaging methods in order to investigate heterogeneous systems. Overhauser imaging is briefly discussed.


2002 ◽  
Vol 12 (9) ◽  
pp. 323-324
Author(s):  
D. Le Bolloc'h ◽  
S. Ravy ◽  
P. Senzier ◽  
C. Pasquier ◽  
C. Detlefs

The correlation length of the charge density wave ordering in Rb0.3, MoO, has been studied by x-ray diffraction under electric field applied along the one-dimensional axis. The (10, 0.25, -5.5) satellite reflection has been measured in 3D, using high Q-resolution available at the ESRF. Under electrical field, the satellite reaches two stable positions depending on the temperature. It can switch from one to another as a function of the temperature and the current with very long relaxation times ($\rm 10^{th}$ of minutes). After several cycling with T and E, the satellite reflection is found to shift in the 3 main directions. The width of the satellite is reduced by a factor of two in the k-direction and an increase of the transverse correlation length is observed in the two others: the ordered domains look elongated, reaching until 5000 Å in the direction of the applied field and around 1OOO Å, in the perpendicular directions.


2002 ◽  
Vol 57 (6-7) ◽  
pp. 413-418 ◽  
Author(s):  
Noriyoshi Kimura ◽  
Toru Hachisuka ◽  
Yukitaka Nakano ◽  
Ryuichi Ikeda

2H and 1H NMR measurements were performed on crystalline [Pt(en)2][PtX2(en)2](ClO4)4 (X = Cl, Br), where the protonated and partially deuterated ethylenediamines (en’s), NH2(CH2)2NH2, NH2(CD2)2NH2 and ND2(CH2)2ND2 were used as ligands. Measurements of 2H and 1H NMR spin-lattice relaxation times showed the presence of motions of en chelate rings at the temperatures near the phase transitions, whereas broad 2H NMR spectra and the reported X-ray diffraction data showed no marked motions. These results were consistently explained by introducing the en puckering motion between highly asymmetric potential wells with an energy difference of 10 - 13 kJ mol-1. This difference was shown to be much larger than 2 - 5 kJ mol-1, reported for the iodo-complex, [Pt(en)2][PtI2(en)2](ClO4)4


Author(s):  
Hiroshi Ishiguro ◽  
Takanori Kai ◽  
Kuniyasu Ogawa

Transient one-dimensional distribution of cryoprotectant concentration in pseudobiological tissues (agar) was measured noninvasively using magnetic resonance imaging (MRI). Cryoprotectants were dimethyl sulfoxide (DMSO) and glycerol, common cryoprotectants penetrating cells. Attenuation of MRI image intensity due to volumetric fraction of solution and relaxation times was also investigated. Apparent diffusivity of each cryoprotectant as a function of agar concentration was determined from the inverse problem analysis. The diffusivity decreased with an increase in agar concentration. This method was also applied to the liver tissues of chicken.


1992 ◽  
Vol 47 (1-2) ◽  
pp. 221-226 ◽  
Author(s):  
Robin L. Armstrong ◽  
Sunyu Su

AbstractMilli - Kelvin NQR experiments are often essential for the study of pseudo one-dimensional materials. A brief overview of the special technical consideration for carrying out NQR measurements in a dilution refrigerator is given. Recent halide quadrupole resonance experiments on the pseudo one-dimensional XY crystals PrCl3 and PrBr3 are reviewed including the measurement and interpretation of frequencies, and spin-lattice relaxation times.


1971 ◽  
Vol 42 (13) ◽  
pp. 5492-5494 ◽  
Author(s):  
A. G. Engelhardt

Sign in / Sign up

Export Citation Format

Share Document