Effects of complete plant submergence on vegetative growth, grain yield and some biochemical changes in rice plants

1985 ◽  
Vol 87 (3) ◽  
pp. 365-374 ◽  
Author(s):  
M. Devender Reddy ◽  
B. N. Mittra
1975 ◽  
Vol 11 (2) ◽  
pp. 89-95 ◽  
Author(s):  
H. M. Shelton ◽  
L. R. Humphreys

SUMMARYUpland rice and Stylosanthes guyanensis were sown simultaneously in pure and mixed culture at varying densities at Na Pheng, central Laos. Vegetative growth of the rice was negatively related to stylo density over the range o to 81 stylo plants/m.2 Rice grain yield varied from 98·4 gm./m.2 in monoculture to 63·4 gm./m.2 when grown with 81 stylo plants/m.2 Rice was more competitive than stylo, but stylo growth was relatively independent of rice density over the range 20 to 120 rice plants/m.2


Jurnal BiBieT ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 9
Author(s):  
Dewi Rezki

<p align="center"><strong>ABSTRAK</strong></p><p align="center"><strong> </strong></p><p>Tingginya laju pertumbuhan penduduk dan alih fungsi lahan pertanian, menyebabkan perlunya dilakukan upaya untuk meningkatkan produksi beras. Sedangkan produksi yang diperoleh dari lahan pertanian yang ada belum mencapai hasil yang optimal.  Upaya yang perlu dilakukan  untuk meningkatkan produksi padi diantaranya adalah memperbaiki tingkat kesuburan tanah dan metode budidaya tanaman padi.  Penelitian ini bertujuan untuk memperoleh kombinasi yang paling tepat antara bahan  organik kaya sumber hayati (BOKASHI) dan pupuk NPK terhadap produksi padi yang ditanam secara jajar legowo.  penelitian dilakukan di Kecamatan Pulau Punjung Kabupaten Dharmasraya Provinsi Sumatera Barat pada bulan Juli-Desember 2015.  Penelitian menunjukkan bahwa kombinasi bokashi + 75 % pupuk buatan memberikan hasil gabah 6.3 ton/Ha, sementara produksi padi tanpa penambahan bokashi + 100 % pupuk buatan memberikan hasil gabah 3.9 ton/Ha, dengan demikian dapat disimpulkan bahwa penambahan bokashi dapat meningkatkan produksi gabah sebanyak 2.4 ton/Ha.  Penambahan 2 ton/Ha bokashi yang ditanam secara sistem jajar legowo pada tanaman padi berpengaruh nyata terhadap pertumbuhan dan produksi tanaman padi dan dapat mengurangi penggunaan pupuk buatan sebanyak 25 %.</p><p>Kata Kunci : Bokashi, Produksi Padi, Jajar Legowo, Kombinasi</p><p> </p><p align="center">ABSTRACT</p><p align="center"> </p><p>The high rate of population growth and the conversion of agricultural land, causing the need for efforts to increase rice production. While the production obtained from existing agricultural lands yet to achieve optimal results. Efforts should be made to increase the rice production of which is to improve soil fertility and method of rice cultivation. This study aims to obtain the most appropriate combination of organic material rich in biological resources (Bokashi) and NPK fertilizer on rice production are grown Legowo row. Research conducted in the District Pulau Punjung Dharmasraya West Sumatra province in July to December 2015. The study showed that the combination of Bokashi + 75% of artificial fertilizers provide grain yield of 6.3 tonnes / ha, while rice production without adding Bokashi + 100% synthetic fertilizers provide grain yield 3.9 tonnes / ha, thus it can be concluded that the addition of bokashi can increase grain production as much as 2.4 tons / ha. Addition of 2 tons / ha planted Bokashi system Legowo row in rice plants significantly affect the growth and production of rice plants and can reduce the use of artificial fertilizers as much as 25%.</p><p>Keywords: Bokashi, Rice Production, Jajar Legowo, Combination</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eder Eujácio da Silva ◽  
Fábio Henrique Rojo Baio ◽  
Daniel Fernando Kolling ◽  
Renato Schneider Júnior ◽  
Alex Rogers Aguiar Zanin ◽  
...  

AbstractSowing density is one of the most influential factors affecting corn yield. Here, we tested the hypothesis that, according to soil attributes, maximum corn productivity can be attained by varying the seed population. Specifically, our objectives were to identify the soil attributes that affect grain yield, in order to generate a model to define the optimum sowing rate as a function of the attributes identified, and determine which vegetative growth indices can be used to predict yield most accurately. The experiment was conducted in Chapadão do Céu-GO in 2018 and 2019 at two different locations. Corn was sown as the second crop after the soybean harvest. The hybrids used were AG 8700 PRO3 and FS 401 PW, which have similar characteristics and an average 135-day cropping cycle. Tested sowing rates were 50, 55, 60, and 65 thousand seeds ha−1. Soil attributes evaluated included pH, calcium, magnesium, phosphorus, potassium, organic matter, clay content, cation exchange capacity, and base saturation. Additionally, we measured the correlation between the different vegetative growth indices and yield. Linear correlations were obtained through Pearson’s correlation network, followed by path analysis for the selection of cause and effect variables, which formed the decision trees to estimate yield and seeding density. Magnesium and apparent electrical conductivity (ECa) were the most important soil attributes for determining sowing density. Thus, the plant population should be 56,000 plants ha−1 to attain maximum yield at ECa values > 7.44 mS m−1. In addition, the plant population should be 64,800 plants ha−1 at values < 7.44 mS m−1 when magnesium levels are greater than 0.13 g kg−1, and 57,210 plants ha−1 when magnesium content is lower. Trial validation showed that the decision tree effectively predicted optimum plant population under the local experimental conditions, where yield did not significantly differ among populations.


1986 ◽  
Vol 78 (6) ◽  
pp. 1053-1058 ◽  
Author(s):  
L. E. Francois ◽  
E. V. Maas ◽  
T. J. Donovan ◽  
V. L. Youngs

2012 ◽  
Vol 11 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Jin Seo Jeong ◽  
Youn Shic Kim ◽  
Mark C. F. R. Redillas ◽  
Geupil Jang ◽  
Harin Jung ◽  
...  

2016 ◽  
Vol 46 (3) ◽  
pp. 284-291 ◽  
Author(s):  
Adriano Stephan Nascente ◽  
Anna Cristina Lanna

ABSTRACT The presence of cover crop straw and early application of total N at sowing may provide significant changes in the microbial population, reflecting on the N dynamics in the soil and in upland rice plants. This study aimed at determining the effect of the early application of nitrogen doses as mineral N and microbial biomass carbon in the soil, as well as in the activity of nitrate reductase, and grain yield of upland rice plants cultivated under no-tillage system (NTS). A randomized blocks design, in a split-plot scheme, with four replications, was used. The treatments consisted of N doses (0 kg ha-1, 40 kg ha-1, 80 kg ha-1 and 120 kg ha-1) and the presence or absence of U. brizantha cover straw. Maintaining the straw on the soil surface reduces the ammonium levels and increases the microbial biomass carbon content of the soil. The application of increasing doses of N in the soil provides increases in the levels of nitrate and ammonium in the soil up to 28 days after emergence. The activity of the nitrate reductase enzyme in the plants increases and the contents of ammonium and nitrate in the soil decrease with the crop development. The number of panicles and grain yield of upland rice increase with the increase of the nitrogen fertilization, but decrease in the presence of U. brizantha straw. Thus, it is recommend the use of early N fertilization in upland rice crop.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e5877 ◽  
Author(s):  
Ram B. Khadka ◽  
Norman Uphoff

Many benefits ofTrichodermainoculation for improving crop production have been documented, including growth and yield enhancement and the alleviation of biotic and abiotic stresses. However, because rice is usually cultivated under continuous flooding that creates anaerobic soil conditions, this limits the benefits of these beneficial fungi. Cultivating rice with the methods of the System of Rice Intensification (SRI) provides rice plants with a more favorable environment for their colonization by beneficial microbes in the soil because the soil is more aerobic under SRI management and contains more organic matter. This study evaluated the effects ofTrichodermainoculation of rice plants under SRI management compared with transplanted and flooded rice plants, considering also the effects of different means of fertilization and different varieties in rice. Experiments were conducted in 2015 and 2016 under the tropical climate of Nepal’s western terai (plains) during both the rainy season (July to November) and the dry season (March to July). The results indicated significantly better performance (P = 0.01) associated withTrichodermainoculation for both seasons and for both systems of crop management in terms of grain yield and other growth-contributing factors, compared to non-inoculated rice cropping. Relatively higher effects on grain yield were recorded also with organic compared to inorganic fertilization; for unimproved (heirloom) varieties compared with improved varieties; and from SRI vs. conventional flooded crop management. The yield increase withTrichodermatreatments across all trials was 31% higher than in untreated plots (4.9 vs 4.5 mt ha−1). WithTrichodermatreatment, yields compared with non-treated plots were 24% higher with organic SRI (6.38 vs 5.13 mt ha−1) and 52% higher with non-organic SRI (6.38 vs 3.53 mt ha−1). With regard to varietal differences, under SRI managementTrichodermainoculation of the improved variety Sukhadhan-3 led to 26% higher yield (6.35 vs 5.04 mt ha−1), and with the heirloom variety Tilkidhan, yield was 41% higher (6.29 vs 4.45 mt ha−1). Economic analysis indicated that expanding the organic cultivation of local landraces under SRI management should be profitable for farmers where such rice has a good market price due to its premium quality and high demand and when SRI enhances yield. These varieties’ present low yields can be significantly increased by integratingTrichodermabio-inoculation with SRI cultural methods. Other recent research has shown that such inoculation can be managed profitably by farmers themselves.


Sign in / Sign up

Export Citation Format

Share Document