Crack propagation in ceramic materials under cyclic loading conditions

1975 ◽  
Vol 6 (11) ◽  
pp. 2161-2163 ◽  
Author(s):  
Y. W. Mai ◽  
A. G. Atkins
Author(s):  
Piotr Bednarz ◽  
Jaroslaw Szwedowicz

The Haensel damage model correlates lifetime of a component until crack initiation to the dissipated and stored energy in the material during cyclic loading. The crack initiation is influenced by mean stresses. The Haensel damage model considers the mean stress effect by including compressive and tensile stresses in calculations of elastic strain energy during cyclic loading conditions. The goal of the paper is to extend the above model to predict crack propagation under large cyclic plasticity and non-proportional loading conditions. After voids initiation onset of necking, voids growth and linking takes place among them. During this process a mesocrack is created. This stage of fracture involves the same amount of released energy for new crack surface creation as dissipated energy for mesocrack initiation. The amount of dissipated and stored energy is related to the process zone size and to the number of cycles. Ilyushin’s postulate is used to calculate the amount of dissipated energy. In order to consider a contribution of tensile stresses only during loading to crack propagation, tensile/compressive split is performed for the stress tensor. One of the key drivers of this paper is to provide a straightforward engineering approach, which does not require explicit modelling of cracks. The proposed mathematical approach accounts for redistribution of stresses, strains and energy during crack propagation. This allows to approximate the observed effect of distribution of dissipated energy on the front of a crack tip. The developed approach is validated through FE (Finite Element) simulations of the Dowling and Begley experiment. The Haensel lifetime prediction of Dowling’s experiment is in good agreement with the experimental data and the explicit FE results. Finally, the proposed mathematical approach simplifies significantly the engineering effort for Nonlinear Fracture Mechanics lifetime prediction by avoiding the requirement to simulate real crack propagation using node base release methods, XFEM or remeshing procedures.


Author(s):  
Ju¨rgen Rudolph ◽  
Kai Bauerbach ◽  
Michael Vormwald

Thermal cyclic loading conditions of nuclear power plant components cause local stress-strain hystereses which are considered to be fatigue relevant events. The contributions of the hysteresis-loops to the fatigue process are evaluated using a damage parameter based on the effective cyclic J-integral which also includes the effects of crack closure. The successful application of such a short crack propagation approach essentially depends on the realistic description of the crack closure. In this context a finite element based algorithm is presented to simulate the opening and closure effects under special consideration of thermal cyclic loading conditions. The concept is based on node release and contact mechanisms. The implications of the crack propagation on the temperature at the crack tip are to be considered. In this context, the consequences of the altered temperature profile as the crack propagates have to be taken into account. It is the aim to formulate Newman-type analytical equations in order to incorporate the influence of crack closure into an engineering approach. Furthermore, the peculiarities of transient thermal loading on the crack propagation behavior are considered. The reduced crack propagation rates due to the temperature gradient in the direction of the wall are investigated numerically in order to describe the reduction of the damage contribution and decelerated crack propagation rates. The effects of changing thermal conditions in the wall on the crack propagation behavior are considered within the numerical algorithm.


2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


2021 ◽  
Vol 806 ◽  
pp. 140860
Author(s):  
Di Xie ◽  
Zongyang Lyu ◽  
Yuan Li ◽  
Peter K. Liaw ◽  
Huck Beng Chew ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document