Analysis of gene expression in human colorectal cancer tissues by cDNA array

2002 ◽  
Vol 37 (S14) ◽  
pp. 83-86 ◽  
Author(s):  
Hiroyuki Yamamoto ◽  
Arisa Imsumran ◽  
Hiroshi Fukushima ◽  
Yasushi Adachi ◽  
Yongfen Min ◽  
...  
Author(s):  
Michele Bianchini ◽  
Estrella Levy ◽  
Cinzia Zucchini ◽  
Victor Pinski ◽  
Carlos Macagno ◽  
...  

Human Cell ◽  
2021 ◽  
Author(s):  
Yasuhiko Hamada ◽  
Akiko Eguchi ◽  
Kyosuke Tanaka ◽  
Masaki Katsurahara ◽  
Noriyuki Horiki ◽  
...  

2011 ◽  
Vol 113 (8) ◽  
pp. 810-814 ◽  
Author(s):  
Yang Jin-Song ◽  
Wang Zhao-Xia ◽  
Lv Cheng-Yu ◽  
Liang Xiao-Di ◽  
Sun Ming ◽  
...  

2010 ◽  
Vol 6 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Maria Notarnicola ◽  
Simona Pisanti ◽  
Valeria Tutino ◽  
Domenica Bocale ◽  
Maria Teresa Rotelli ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
JunYu Ren ◽  
Wenliang Li ◽  
Guoqing Pan ◽  
Fengchang Huang ◽  
Jun Yang ◽  
...  

Decreased expression of miR-142-3p was observed in human cancers. However, the function and mechanism of miR-142-3p in human colorectal cancer remain obscure. The expressions of miR-142-3p in human colorectal cancer tissues and cell lines were measured by RT-qPCR. The effects of miR-142-3p on cell invasion and migration were detected by transwell assays. The efficiency of aerobic glycolysis was determined by glucose consumption and lactate production. Dual-luciferase reporter assays were performed to confirm the correlation between miR-142-3p and pyruvate kinase isozyme M2 (PKM2). The level of PKM2 was assessed by western blotting. Our results showed that the expression of miR-142-3p was decreased both in human colorectal cancer tissues and in cells. Overexpression of miR-142-3p in cell line attenuated colorectal cancer cell invasion and migration. About the underlying mechanism, we found that miR-142-3p modulated aerobic glycolysis via targeting pyruvate kinase M2 (PKM2). In addition, we demonstrated PKM2 and PKM2-mediated aerobic glycolysis contributes to miR-142-3p-mediated colorectal cancer cell invasion and migration. Hence, these data suggested that miR-142-3p was a potential therapeutic target for the treatment of human colorectal cancer.


2021 ◽  
Vol 11 (3) ◽  
pp. 548-552
Author(s):  
Yiqian Li ◽  
Haofeng Yuan ◽  
Yibin Chen ◽  
Baoqi Xu ◽  
Yanhong Zhang

This work investigates the effect of circABCC4 on the proliferation, migration, and invasion of colorectal cancer SW620 cells; circABCC4’s regulation of miR-216a-3p is also studied. qRT-PCR was used to measure the levels of circABCC4 and miR-216a-3p in colorectal cancer and adjacent tissues. The human colorectal cancer SW620 cells were transfected with different constructs of circABCC4 or miR-216a-3p or both to study their interactions and combined effects on cell behavior. A dual-luciferase reporter experiment tested the targeted relationship between circABCC4 to miR-216a-3p. Furthermore, the behaviors of SW620 cells, such as cell viability, migration, and invasion, were investigated. Also, the proteins related to cell behaviors were investigated with western blotting. Our results showed that colorectal cancer tissues had a higher level of circABCC4 but a lower level miR-216a-3p. The increased level of circABCC4 and the reduced level of miR-216a-3p had analogous influences on the behaviors of SW620 cells, resulting in reduced cell proliferation, migration, and invasion; the levels of related protein were also decreased. Moreover, we found that disrupting miR-548c-3p could reverse the influence of inhibiting circABCC4 on SW620 cells. In addition, the dual-luciferase reporter assay results confirmed the targeting of miR-216a-3p by circABCC4. These data demonstrate that the silencing of circABCC4 may inhibit the proliferation, migration, and invasion of colorectal cancer cells by upregulating miR-548c-3p.


2015 ◽  
Author(s):  
Hiroaki Niitsu ◽  
Takao Hinoi ◽  
Yasuo Kawaguchi ◽  
Kazuhiro Sentani ◽  
Naohide Oue ◽  
...  

2020 ◽  
Vol 18 (05) ◽  
pp. 2050030
Author(s):  
Dongmei Ai ◽  
Gang Liu ◽  
Xiaoxin Li ◽  
Yuduo Wang ◽  
Man Guo

In addition to tumor cells, a large number of immune cells are found in the tumor microenvironment (TME) of cancer patients. Tumor-infiltrating immune cells play an important role in tumor progression and patient outcome. We improved the relative proportion estimation algorithm of immune cells based on RNA-seq gene expression profiling and solved the multiple linear regression model by support vector regression ([Formula: see text]-SVR). These steps resulted in increased robustness of the algorithm and more accurate calculation of the relative proportion of different immune cells in cancer tissues. This method was applied to the analysis of infiltrating immune cells based on 41 pairs of colorectal cancer tissues and normal solid tissues. Specifically, we compared the relative fractions of six types of immune cells in colorectal cancer tissues to those found in normal solid tissue samples. We found that tumor tissues contained a higher proportion of CD8 T cells and neutrophils, while B cells and monocytes were relatively low. Our pipeline for calculating immune cell proportion using gene expression profile data can be freely accessed from GitHub at https://github.com/gutmicrobes/EICS.git.


Sign in / Sign up

Export Citation Format

Share Document