How to fairly reconstruct a shared secret

Author(s):  
Jingmin He ◽  
Ed Dawson
Keyword(s):  
2020 ◽  
Vol 10 (4) ◽  
pp. 1353 ◽  
Author(s):  
Jinjing Shi ◽  
Shuhui Chen ◽  
Jiali Liu ◽  
Fangfang Li ◽  
Yanyan Feng ◽  
...  

A novel encryption algorithm called the chained phase-controlled operation (CPCO) is presented in this paper, inspired by CNOT operation, which indicates a stronger correlation among message states and each message state depending on not only its corresponding key but also other message states and their associated keys. Thus, it can prevent forgery effectively. According to the encryption algorithm CPCO and the classical dual signature protocols, a quantum dual signature scheme based on coherent states is proposed in this paper. It involves three participants, the customer Alice, the merchant Bob and the bank Trent. Alice expects to send her order message and payment message to Bob and Trent, respectively. It is required that the two messages must be linked to guarantee the payment is paid for the corresponding order. Thus, Alice can generate a quantum dual signature to achieve the goal. In detail, Alice firstly signs her two messages with the shared secret key. Then She connects the two signatures into a quantum dual signature. Finally, Bob and Trent severally verify the signatures of the order message and the payment message. Security analysis shows that our scheme can ensure its security against forgery, repudiation and denial. In addition, simulation experiments based on the Strawberry Fields platform are performed to valid the feasibility of CPCO. Experimental results demonstrate that CPCO is viable and the expected coherent states can be acquired with high fidelity, which indicates that the encryption algorithm of the scheme can be implemented on quantum devices effectively.


2012 ◽  
Vol 457-458 ◽  
pp. 1499-1507 ◽  
Author(s):  
Si Guang Chen ◽  
Meng Wu ◽  
Wei Feng Lu

In this work we consider the problem of designing a secret error-correcting network coding scheme against an adversary that can re-select the tapping links in different time slot and inject z erroneous packets into network. We first derive a necessary condition for keeping the transmitted information secret from the adversary, while the network is only subject to the eavesdropping attack. We then design an error-correcting scheme by combining the rank-metric codes with shared secret model, which can decode the transmitted information correctly provided a sufficiently large q. With that, a secret error-correcting network coding is proposed by combining this error-correcting scheme with secret communication. We show that under the requirement of communication can achieve a rate of packets. Moreover, it ensures that the communicated information is reliable and information-theoretic security from the adversary. In particular, the requirement of packet length is not as large as the required in [12]. Finally, the security and performance analyses illustrate the characteristics of our scheme.


2019 ◽  
Vol 34 (01) ◽  
pp. 1950004 ◽  
Author(s):  
Yuhua Sun ◽  
Lili Yan ◽  
Yan Chang ◽  
Shibin Zhang ◽  
Tingting Shao ◽  
...  

Quantum secure direct communication allows one participant to transmit secret messages to another directly without generating a shared secret key first. In most of the existing schemes, quantum secure direct communication can be achieved only when the two participants have full quantum ability. In this paper, we propose two semi-quantum secure direct communication protocols to allow restricted semi-quantum or “classical” users to participate in quantum communication. A semi-quantum user is restricted to measure, prepare, reorder and reflect quantum qubits only in the classical basis [Formula: see text]. Both protocols rely on quantum Alice to randomly prepare Bell states, perform Bell basis measurements and publish the initial Bell states, but the semi-quantum Bob only needs to measure the qubits in classical basis to obtain secret information without quantum memory. Security and qubit efficiency analysis have been given in this paper. The analysis results show that the two protocols can avoid some eavesdropping attacks and their qubit efficiency is higher than some current related quantum or semi-quantum protocols.


Author(s):  
Tohari Ahmad ◽  
Hudan Studiawan ◽  
Hafidh Sholihuddin Ahmad ◽  
Royyana M. Ijtihadie ◽  
Waskitho Wibisono
Keyword(s):  

Author(s):  
Jie Li ◽  
Okko Makkonen ◽  
Camilla Hollanti ◽  
Oliver W. Gnilke

2020 ◽  
Vol 8 (1) ◽  
pp. 140-160
Author(s):  
Inka Trisna Dewi ◽  
Amang Sudarsono ◽  
Prima Kristalina ◽  
Mike Yuliana

One effort to secure vehicle-to-vehicle (V2V) communication is to use a symmetrical cryptographic scheme that requires the distribution of shared secret keys. To reduce attacks on key distribution, physical layer-based key formation schemes that utilize the characteristics of wireless channels have been implemented. However, existing schemes still produce a low bit formation rate (BFR) even though they can reach a low bit error rate (BER). Note that V2V communication requires a scheme with high BFR in order to fulfill its main goal of improving road safety. In this research, we propose a higher rate secret key formation (HRKF) scheme using received signal strength (RSS) as a source of random information. The focus of this research is to produce keys with high BFR without compromising BER. To reduce bit mismatch, we propose a polynomial regression method that can increase channel reciprocity. We also propose a fixed threshold quantization (FTQ) method to maintain the number of bits so that the BFR increases. The test results show that the HRKF scheme can increase BFR from 40% up to 100% compared to existing research schemes. To ensure the key cannot be guessed by the attacker, the HRKF scheme succeeds in producing a key that meets the randomness of the NIST test.


Author(s):  
Yuliya Tanasyuk ◽  
Petro Burdeinyi

The given paper is devoted to the software development of block cipher based on reversible one-dimensional cellular automata and the study of its statistical properties. The software implementation of the proposed encryption algorithm is performed in C# programming language in Visual Studio 2017. The paper presents specially designed approach for key generation. To ensure desired cryptographic stability, the shared secret parameters can be adjusted to contain information needed for creating substitution tables, defining reversible rules, and hiding final data. For the first time, it is suggested to create substitution tables based on iterations of a cellular automaton that is initialized by the key data.


Author(s):  
Олексій Сергійович Вамболь

Asymmetric ciphers are widely used to ensure the confidentiality of data transmission via insecure channels. These cryptosystems allow the interacting parties to create a shared secret key for a symmetric cipher in such a way that an eavesdropper gets no information useful for cryptanalysis. Network security protocols that use asymmetric ciphers include TLS, S/MIME, OpenPGP, Tor, and many others. Some of the asymmetric encryption schemes are homomorphic, that is, that they allow calculations on encrypted data to be performed without preliminary decryption. The aforesaid property makes possible using these cryptosystems not only for symmetric key establishment but also in several areas of application, in particular in secret voting protocols and cloud computing. The matrix-based knapsack cipher is a new additively homomorphic asymmetric encryption scheme, which is based on the properties of isomorphic transformations of the inner direct product of diagonal subgroups of a general linear group over a Galois field. Unlike classic knapsack encryption schemes, the cryptographic strength of this cipher depends on the computational complexity of the multidimensional discrete logarithm problem. Despite some useful properties, further research into the cryptographic strength of the matrix-based knapsack cipher has found serious drawbacks inherent in this cryptographic scheme. In the given paper an improved polynomial-time plaintext-recovery attack on the matrix-based knapsack cipher is proposed. Applying this cryptanalytic method requires only public information and has time complexity O(t1.34), where t denotes the decryption time of the attacked cryptosystem. The aforementioned attack is more productive and easier to implement in software in comparison with the original one. The advantages of the proposed method are due to using in its algorithm the simple and relatively fast matrix trace operation instead of more complex and slower transformations.


2022 ◽  
Author(s):  
Prabhas Kumar Singh ◽  
Biswapati Jana ◽  
Kakali Datta

Abstract In 2020, Ashraf et al. proposed an interval type-2 fuzzy logic based block similarity calculation using color proximity relations of neighboring pixels in a steganographic scheme. Their method works well for detecting similarity, but it has drawbacks in terms of visual quality, imperceptibility, security, and robustness. Using Mamdani fuzzy logic to identify color proximity at the block level, as well as a shared secret key and post-processing system, this paper attempts to develop a robust data hiding scheme with similarity measure to ensure good visual quality, robustness, imperceptibility, and enhance the security. Further, the block color proximity is graded using an interval threshold. Accordingly, data embedding is processed in the sequence generated by the shared secret keys. In order to increase the quality and accuracy of the recovered secret message, the tampering coincidence problem is solved through a post-processing approach. The experimental analysis, steganalysis and comparisons clearly illustrate the effectiveness of the proposed scheme in terms of visual quality, structural similarity, recoverability and robustness.


Sign in / Sign up

Export Citation Format

Share Document