scholarly journals Nonminimal gradient flows in QCD-like theories

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Marco Boers

Abstract The Yang-Mills gradient flow for QCD-like theories is generalized by including a fermionic matter term in the gauge field flow equation. We combine this with two different flow equations for the fermionic degrees of freedom. The solutions for the different gradient flow setups are used in the perturbative computations of the vacuum expectation value of the Yang-Mills Lagrangian density and the field renormalization factor of the evolved fermions up to next-to-leading order in the coupling. We find a one-parameter family of flow systems for which there exists a renormalization scheme in which the evolved fermion anomalous dimension vanishes to all orders in perturbation theory. The fermion number dependence of different flows is studied and applications to lattice studies are anticipated.

Author(s):  
Alexander Mielke

AbstractWe consider a non-negative and one-homogeneous energy functional $${{\mathcal {J}}}$$ J on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-independent system given in terms of the time-dependent functional $${{\mathcal {E}}}(t,u)= t {{\mathcal {J}}}(u)$$ E ( t , u ) = t J ( u ) and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutions of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.


1992 ◽  
Vol 07 (11) ◽  
pp. 2469-2485
Author(s):  
A. C. CADAVID ◽  
R. J. FINKELSTEIN

An affine field theory may be constructed by gauging an affine algebra. The momentum integrals of the affine N = 4 Yang–Mills theory are ultraviolet finite but diverge because the sum over states is infinite. If the affine symmetry is broken by postulating a nonvanishing vacuum expectation value for that component of the scalar field lying in the L0 direction, then the theory acquires a linear mass spectrum. This broken theory is ultraviolet finite too, but the mass spectrum is unbounded. If it is also postulated that the mass spectrum has an upper bound (say, the Planck mass), then the resulting theory appears to be altogether finite. The influence of the exotic states has been estimated and, according to the proposed scenario, is negligible below energies at which gravitational interactions become important. The final effective theory has the symmetry of a compact Lie algebra augmented by the operator L0.


2013 ◽  
Vol 28 (28) ◽  
pp. 1350149 ◽  
Author(s):  
YONI BENTOV ◽  
A. ZEE

We study the LHC phenomenology of a general class of "Private Higgs" (PH) models, in which fermions obtain their masses from their own Higgs doublets with [Formula: see text] Yukawa couplings, and the mass hierarchy is translated into a dynamical chain of vacuum expectation values. This is accomplished by introducing a number of light gauge-singlet scalars, the "darkons," some of which could play the role of dark matter. These models allow for substantial modifications to the decays of the lightest Higgs boson, for instance through mixing with TeV-scale PH fields and light darkons: in particular, one could accommodate [Formula: see text] flavor-uncorrelated deviations from the SM [Formula: see text] vertices with TeV-scale degrees of freedom. We also discuss a new implementation of the PH framework, in which the quark and neutrino mixing angles arise as one-loop corrections to the leading order picture.


1995 ◽  
Vol 10 (18) ◽  
pp. 2703-2732 ◽  
Author(s):  
BRIAN P. DOLAN

It is argued that renormalization group flow can be interpreted as a Hamiltonian vector flow on a phase space which consists of the couplings of the theory and their conjugate “momenta,” which are the vacuum expectation values of the corresponding composite operators. The Hamiltonian is linear in the conjugate variables and can be identified with the vacuum expectation value of the trace of the energy-momentum operator. For theories with massive couplings the identity operator plays a central role and its associated coupling gives rise to a potential in the flow equations. The evolution of any quantity, such as N-point Green functions, under renormalization group flow can be obtained from its Poisson bracket with the Hamiltonian. Ward identities can be represented as constants of the motion which act as symmetry generators on the phase space via the Poisson bracket structure.


2004 ◽  
Vol 19 (25) ◽  
pp. 4251-4270 ◽  
Author(s):  
CARLOS CASTRO

A novel approach to evaluate the Wilson loops associated with a SU (∞) gauge theory in terms of pure string degrees of freedom is presented. It is based on the Guendelman–Nissimov–Pacheva formulation of composite antisymmetric tensor field theories of area (volume) preserving diffeomorphisms which admit p-brane solutions and which provide a new route to scale-symmetry breaking and confinement in Yang–Mills theory. The quantum effects are discussed and we evaluate the vacuum expectation values (VEV) of the Wilson loops in the large N limit of the quenched reduced SU (N) Yang–Mills theory in terms of a path integral involving pure string degrees of freedom. The quenched approximation is necessary to avoid a crumpling of the string worldsheet giving rise to very large Hausdorff dimensions as pointed out by Olesen. The approach is also consistent with the recent results based on the AdS/CFT correspondence and dual QCD models (dual Higgs model with dual Dirac strings). More general Loop wave equations in C-spaces (Clifford manifolds) are proposed in terms of generalized holographic variables that contain the dynamics of an aggregate of closed branes (p-loops) of various dimensionalities. This allows us to construct the higher-dimensional version of Wilson loops in terms of antisymmetric tensor fields of arbitrary rank which couple to p-branes of different dimensionality.


2003 ◽  
Vol 18 (31) ◽  
pp. 2207-2216
Author(s):  
Rajsekhar Bhattacharyya ◽  
Debashis Gangopadhyay

The spacetime dependent Lagrangian formalism of Refs. 1 and 2 is used to obtain a classical solution of Yang–Mills theory. This is then used to obtain an estimate of the vacuum expectation value of the Higgs field viz. ϕa = A/e, where A is a constant and e is the Yang–Mills coupling (related to the usual electric charge). The solution can also accommodate noncommuting coordinates on the boundary of the theory which may be used to construct D-brane actions. The formalism is also used to obtain the Deser–Gomberoff–Henneaux–Teitelboim results10 for dyon charge quantisation in Abelian p-form theories in dimensions D = 2(p+1) for both even and odd p.


2020 ◽  
Vol 181 (6) ◽  
pp. 2257-2303 ◽  
Author(s):  
Jan Maas ◽  
Alexander Mielke

AbstractWe consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary $$\Gamma $$ Γ -convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels.


1983 ◽  
Vol 61 (10) ◽  
pp. 1442-1447 ◽  
Author(s):  
R. Parthasarathy ◽  
M. Singer ◽  
K. S. Viswanathan

The ground state in an SU(2) Yang–Mills theory using a constant nonabelian background field is studied taking into account the gluon and quark one-loop corrections to the classical energy density. The calculated energy density is found to be lower than that of the perturbative vacuum. The local minimum of the energy density is used to calculate the vacuum expectation value of the gluon condensate and the bag constant, which is found to be in reasonable agreement with the known estimates. The stability of this approximation is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document