scholarly journals The L∞ structure of gauge theories with matter

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Humberto Gomez ◽  
Renann Lipinski Jusinskas ◽  
Cristhiam Lopez-Arcos ◽  
Alexander Quintero Vélez

Abstract In this work we present an algebraic approach to the dynamics and perturbation theory at tree-level for gauge theories coupled to matter. The field theories we will consider are: Chern-Simons-Matter, Quantum Chromodynamics, and scalar Quantum Chromodynamics. Starting with the construction of the master action in the classical Batalin-Vilkovisky formalism, we will extract the L∞-algebra that allow us to recursively calculate the perturbiner expansion from its minimal model. The Maurer-Cartan action obtained in this procedure will then motivate a generating function for all the tree-level scattering amplitudes. There are two interesting outcomes of this construction: a generator for fully-flavoured amplitudes via a localisation on Dyck words; and closed expressions for fermion and scalar lines attached to n-gluons with arbitrary polarisations.

2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Pranay Gorantla ◽  
Ho Tat Lam

We study 3+1 dimensional SU(N)SU(N) Quantum Chromodynamics (QCD) with N_fNf degenerate quarks that have a spatially varying complex mass. It leads to a network of interfaces connected by interface junctions. We use anomaly inflow to constrain these defects. Based on the chiral Lagrangian and the conjectures on the interfaces, characterized by a spatially varying \thetaθ-parameter, we propose a low-energy description of such networks of interfaces. Interestingly, we observe that the operators in the effective field theories on the junctions can carry baryon charges, and their spin and isospin representations coincide with baryons. We also study defects, characterized by spatially varying coupling constants, in 2+1 dimensional Chern-Simons-matter theories and in a 3+1 dimensional real scalar theory.


1994 ◽  
Vol 09 (18) ◽  
pp. 1695-1700 ◽  
Author(s):  
O.M. DEL CIMA

One discusses the tree-level unitarity and presents asymptotic behavior of scattering amplitudes for three-dimensional gauge-invariant models where complex Chern- Simons-Maxwell fields (with and without a Proca-like mass) are coupled to an Abelian gauge field.


1992 ◽  
Vol 07 (19) ◽  
pp. 4655-4670 ◽  
Author(s):  
A.P. BALACHANDRAN ◽  
G. BIMONTE ◽  
K.S. GUPTA ◽  
A. STERN

We develop elementary canonical methods for the quantization of Abelian and non-Abelian Chern-Simons actions, using well-known ideas in gauge theories and quantum gravity. Our approach does not involve choice of gauge or clever manipulations of functional integrals. When the spatial slice is a disc, it yields Witten’s edge states carrying a representation of the Kac-Moody algebra. The canonical expressions for the generators of diffeomorphisms on the boundary of the disc are also found, and it is established that they are the Chern-Simons version of the Sugawara construction. This paper is a prelude to our future publications on edge states, sources, vertex operators, and their spin and statistics in 3D and 4D topological field theories.


2004 ◽  
Vol 01 (04) ◽  
pp. 493-544 ◽  
Author(s):  
STEPHEN C. ANCO

A basic problem of classical field theory, which has attracted growing attention over the past decade, is to find and classify all nonlinear deformations of linear abelian gauge theories. The physical interest in studying deformations is to address uniqueness of known nonlinear interactions of gauge fields and to look systematically for theoretical possibilities for new interactions. Mathematically, the study of deformations aims to understand the rigidity of the nonlinear structure of gauge field theories and to uncover new types of nonlinear geometrical structures. The first part of this paper summarizes and significantly elaborates a field-theoretic deformation method developed in earlier work. Some key contributions presented here are, firstly, that the determining equations for deformation terms are shown to have an elegant formulation using Lie derivatives in the jet space associated with the gauge field variables. Secondly, the obstructions (integrability conditions) that must be satisfied by lowest-order deformations terms for existence of a deformation to higher orders are explicitly identified. Most importantly, a universal geometrical structure common to a large class of nonlinear gauge theory examples is uncovered. This structure is derived geometrically from the deformed gauge symmetry and is characterized by a covariant derivative operator plus a nonlinear field strength, related through the curvature of the covariant derivative. The scope of these results encompasses Yang–Mills theory, Freedman–Townsend theory, and Einstein gravity theory, in addition to their many interesting types of novel generalizations that have been found in the past several years. The second part of the paper presents a new geometrical type of Yang–Mills generalization in three dimensions motivated from considering torsion in the context of nonlinear sigma models with Lie group targets (chiral theories). The generalization is derived by a deformation analysis of linear abelian Yang–Mills Chern–Simons gauge theory. Torsion is introduced geometrically through a duality with chiral models obtained from the chiral field form of self-dual (2+2) dimensional Yang–Mills theory under reduction to (2+1) dimensions. Field-theoretic and geometric features of the resulting nonlinear gauge theories with torsion are discussed.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Junho Hong ◽  
James T. Liu

Abstract We investigate the S3 free energy of $$ \mathcal{N} $$ N = 3 Chern-Simons-matter quiver gauge theories with gauge group U(N)r (r ≥ 2) where the sum of Chern-Simons levels does not vanish, beyond the leading order in the large-N limit. We take two different approaches to explore the sub-leading structures of the free energy. First we evaluate the matrix integral for the partition function in the ’t Hooft limit using a saddle point approximation. Second we use an ideal Fermi-gas model to compute the same partition function, but in the limit of fixed Chern-Simons levels. The resulting expressions for the free energy F = − log Z are then compared in the overlapping parameter regime. The Fermi-gas approach also hints at a universal $$ \frac{1}{6} $$ 1 6 log N correction to the free energy. Since the quiver gauge theories we consider are dual to massive Type IIA theory, we expect the sub-leading correction of the planar free energy in the large ’t Hooft parameter limit to match higher-derivative corrections to the tree-level holographic dual free energy, which have not yet been fully investigated.


2018 ◽  
Vol 121 (16) ◽  
Author(s):  
Karthik Inbasekar ◽  
Sachin Jain ◽  
Pranjal Nayak ◽  
V. Umesh

2020 ◽  
Vol 35 (11) ◽  
pp. 2050076 ◽  
Author(s):  
A. R. Fazio

We are investigating if the double copy structure as product of scattering amplitudes of gauge theories applies to cosmological correlators computed, in a class of theories for inflation, by the operatorial version of the In–In formalism of Schwinger–Keldysh. We consider tree-level momentum–space correlators involving primordial gravitational waves with different polarizations and the scalar curvature fluctuations on a three-dimensional fixed spatial slice. The correlators are sum of terms factorized in a time-dependent scalar factor, which takes into account the curved background where energy is not conserved, and in a so-called tensor factor, constructed by polarization tensors. In the latter, we recognize scattering amplitudes in four-dimensional Minkowski space spanned by three points gravitational amplitudes related by double copy to those of gauge theories. Our study indicates that gravitational waves are double copy of gluons and the primordial scalar curvature is double copy of a scalar with Higgs-like interactions.


2020 ◽  
Vol 35 (09) ◽  
pp. 2050042
Author(s):  
J. Beltrán ◽  
B. M. Pimentel ◽  
D. E. Soto

The description of the electromagnetic interaction of charged spinless particles is usually formulated by the Scalar Quantum Electrodynamics. However, there is an alternative formulation given by the Duffin–Kemmer–Petiau theory: the Scalar DKP gauge theory. The proof of the equivalence between these two formulations has been discussed in many researches, but there is not yet a conclusive proof. In this paper, we initiate a complete proof in the framework of the Causal Perturbation theory, showing that both scalar formulations provide the same results for the differential cross-section at tree level.


2019 ◽  
Vol 199 ◽  
pp. 02004
Author(s):  
Yu-Fei Wang

This report presents an investigation of the pion-nucleon elastic scattering in low energy region using a production representation of the partial wave S matrix. The phase shifts are separated into contributions from poles and branch cuts, where the left-hand cut term can be evaluated by tree-level covariant baryon chiral perturbation theory. A comparison between the sum of known contributions and the data in S- and P- wave channels is made. It is found that the known components in S11 and P11 channels are far from enough to saturate the corresponding experimental data, indicating the existence of low-lying hidden poles. The positions of those hidden poles are figured out and the physics behind them are explored.


Sign in / Sign up

Export Citation Format

Share Document