scholarly journals Neutrino portal to FIMP dark matter with an early matter era

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Catarina Cosme ◽  
Maíra Dutra ◽  
Teng Ma ◽  
Yongcheng Wu ◽  
Litao Yang

Abstract We study the freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter candidates through a neutrino portal. We consider a hidden sector comprised of a fermion and a complex scalar, with the lightest one regarded as a FIMP candidate. We implement the Type-I Seesaw mechanism for generating the masses of the Standard Model (SM) neutrinos by introducing three heavy neutrinos which are assumed to be degenerated, for simplicity, and are also responsible for mediating the interactions be- tween the hidden and the SM sectors. We assume that an early matter-dominated (EMD) era took place for some period between inflation and Big Bang Nucleosynthesis, making the Universe to expand faster than in the standard radiation-dominated era. In this case, the hidden and SM sectors are easily decoupled and larger couplings between FIMPs and SM particles are needed from the relic density constraints. In this context, we discuss the dynamics of dark matter throughout the modified cosmic history, evaluate the relevant constraints of the model and discuss the consequences of the duration of the EMD era for the dark matter production. Finally, we show that if the heavy neutrinos are not part of the thermal bath, this scenario becomes testable through indirect detection searches.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrzej Hryczuk ◽  
Maxim Laletin

Abstract We study a novel dark matter production mechanism based on the freeze-in through semi-production, i.e. the inverse semi-annihilation processes. A peculiar feature of this scenario is that the production rate is suppressed by a small initial abundance of dark matter and consequently creating the observed abundance requires much larger coupling values than for the usual freeze-in. We provide a concrete example model exhibiting such production mechanism and study it in detail, extending the standard formalism to include the evolution of dark matter temperature alongside its number density and discuss the importance of this improved treatment. Finally, we confront the relic density constraint with the limits and prospects for the dark matter indirect detection searches. We show that, even if it was never in full thermal equilibrium in the early Universe, dark matter could, nevertheless, have strong enough present-day annihilation cross section to lead to observable signals.


2016 ◽  
Vol 2016 (06) ◽  
pp. 024-024 ◽  
Author(s):  
Gilly Elor ◽  
Nicholas L. Rodd ◽  
Tracy R. Slatyer ◽  
Wei Xue

2018 ◽  
Vol 33 (29) ◽  
pp. 1850181 ◽  
Author(s):  
Saleh Hamdan ◽  
James Unwin

We highlight the general scenario of dark matter freeze-out while the energy density of the universe is dominated by a decoupled non-relativistic species. Decoupling during matter domination changes the freeze-out dynamics, since the Hubble rate is parametrically different for matter and radiation domination. Furthermore, for successful Big Bang Nucleosynthesis the state dominating the early universe energy density must decay, this dilutes (or repopulates) the dark matter. As a result, the masses and couplings required to reproduce the observed dark matter relic density can differ significantly from radiation-dominated freeze-out.


2014 ◽  
Vol 112 (40) ◽  
pp. 12246-12248 ◽  
Author(s):  
P. James E. Peebles

The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2427-2442 ◽  
Author(s):  
TOSHITAKA KAJINO ◽  
MOTOHIKO KUSAKABE ◽  
KAZUHIKO KOJIMA ◽  
TAKASHI YOSHIDA ◽  
DAI G. YAMAZAKI ◽  
...  

Neutrino is a tiny weakly interacting massive particle, but it has strong impacts on various cosmological and astrophysical phenomena. Neutrinos play a critical role in nucleosynthesis of light-to-heavy mass elements in core-collapse supernovae. The light element synthesis is particularly affected by neutrino oscillation (MSW) effect through the ν-process. We propose first that precise determination of sin 2 2θ13 and mass hierarchy can be made by a theoretical study of the observed 7 Li /11 B ratio in stars and presolar grains which are produced from SN ejecta. Theoretical sensitivity in our proposed method is shown to be superior to ongoing long-baseline neutrino experiments for the parameter region 10−4 ≤ sin22θ13 ≤ 10−2. We secondly discuss how to constrain the neutrino mass Σmν from precise analysis of cosmic microwave background anisotropies in the presence of primordial magnetic field. We obtain an upper limit Σmν < 1.3 eV (2σ). Thirdly, we discuss decaying dark-matter particle model in order to solve the primordial lithium problems that the standard Big-Bang nucleosynthesis theory predicts extremely different 6 Li and 7 Li abundances from observations.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Andrey Katz ◽  
Ennio Salvioni ◽  
Bibhushan Shakya

Abstract We discuss a minimal realization of the strongly interacting massive particle (SIMP) framework. The model includes a dark copy of QCD with three colors and three light flavors. A massive dark photon, kinetically mixed with the Standard Model hypercharge, maintains kinetic equilibrium between the dark and visible sectors. One of the dark mesons is necessarily unstable but long-lived, with potential impact on CMB observables. We show that an approximate “isospin” symmetry acting on the down-type quarks is an essential ingredient of the model. This symmetry stabilizes the dark matter and allows to split sufficiently the masses of the other states to suppress strongly their relic abundances. We discuss for the first time the SIMP cosmology with sizable mass splittings between all meson multiplets. We demonstrate that the SIMP mechanism remains efficient in setting the dark matter relic density, while CMB constraints on unstable relics can be robustly avoided. We also consider the phenomenological consequences of isospin breaking, including dark matter decay. Cosmological, astrophysical, and terrestrial probes are combined into a global picture of the parameter space. In addition, we outline an ultraviolet completion in the context of neutral naturalness, where confinement at the GeV scale is generic. We emphasize the general applicability of several novel features of the SIMP mechanism that we discuss here.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Wei Cheng ◽  
Yuan He ◽  
Jing-Wang Diao ◽  
Yu Pan ◽  
Jun Zeng ◽  
...  

Abstract In this paper, we investigate the possibility of testing the weakly interacting massive particle (WIMP) dark matter (DM) models by applying the simplest phenomenological model which introduces an interaction term between dark energy (DE) and WIMP DM, i.e., Q = 3γDMHρDM. In general, the coupling strength γDE is close to 0 as the interaction between DE and WIMP DM is very weak, thus the effect of γDE on the evolution of Y associated with DM energy density can be safely neglected. Meanwhile, our numerical calculation also indicates that xf ≈ 20 is associated with DM freeze-out temperature, which is the same as the vanishing interaction scenario. As for DM relic density, it will be magnified by $$ \frac{2-3{\upgamma}_{\mathrm{DM}}}{2}{\left[2\pi {g}_{\ast }{m}_{\mathrm{DM}}^3/\left(45{s}_0{x}_f^3\right)\right]}^{\gamma_{\mathrm{DM}}} $$ 2 − 3 γ DM 2 2 π g ∗ m DM 3 / 45 s 0 x f 3 γ DM times, which provides a new way to test WIMP DM models. As an example, we analyze the case in which WIMP DM is a scalar DM. (SGL+SNe+Hz) and (CMB+BAO+SNe) cosmological observations will give γDM = $$ {0.134}_{-0.069}^{+0.17} $$ 0.134 − 0.069 + 0.17 and γDM = −0.0008 ± 0.0016, respectively. After further considering the constraints from DM direct detection experiment, DM indirect detection experiment, and DM relic density, we find that the allowed parameter space of the scalar DM model will be completely excluded for the former cosmological observations, while it will increase for the latter ones. Those two cosmological observations lead to an almost paradoxical conclusion. Therefore, one could expect more stringent constraints on the WMIP DM models, with the accumulation of more accurate cosmological observations in the near future.


2016 ◽  
Vol 43 ◽  
pp. 1660202
Author(s):  
Ki-Young Choi ◽  
Jinn-Ouk Gong ◽  
Chang Sub Shin

It is known that the smallest size of the structures of the Universe with the weakly interacting massive dark matter is determined by the scale that enters the Hubble horizon at the time of kinetic decoupling of WIMP. This comes from the fact that the perturbation at smaller scales is erased due to the collisional damping during the kinetic decoupling. However the isocurvature mode is not affected and continue to be constant. We discuss about the generation of the isocurvature mode of WIMP dark matter at small scales recently found by Choi, Gong, and Shin1 and its implications for the indirect detection of dark matter through the formation of the small size of halos.


Author(s):  
Mikhail Shaposhnikov

I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.


Sign in / Sign up

Export Citation Format

Share Document