NEUTRINO MASS AND COLD DARK MATTER PARTICLES IN BIG-BANG NUCLEOSYNTHESIS

2008 ◽  
Vol 23 (27n30) ◽  
pp. 2427-2442 ◽  
Author(s):  
TOSHITAKA KAJINO ◽  
MOTOHIKO KUSAKABE ◽  
KAZUHIKO KOJIMA ◽  
TAKASHI YOSHIDA ◽  
DAI G. YAMAZAKI ◽  
...  

Neutrino is a tiny weakly interacting massive particle, but it has strong impacts on various cosmological and astrophysical phenomena. Neutrinos play a critical role in nucleosynthesis of light-to-heavy mass elements in core-collapse supernovae. The light element synthesis is particularly affected by neutrino oscillation (MSW) effect through the ν-process. We propose first that precise determination of sin 2 2θ13 and mass hierarchy can be made by a theoretical study of the observed 7 Li /11 B ratio in stars and presolar grains which are produced from SN ejecta. Theoretical sensitivity in our proposed method is shown to be superior to ongoing long-baseline neutrino experiments for the parameter region 10−4 ≤ sin22θ13 ≤ 10−2. We secondly discuss how to constrain the neutrino mass Σmν from precise analysis of cosmic microwave background anisotropies in the presence of primordial magnetic field. We obtain an upper limit Σmν < 1.3 eV (2σ). Thirdly, we discuss decaying dark-matter particle model in order to solve the primordial lithium problems that the standard Big-Bang nucleosynthesis theory predicts extremely different 6 Li and 7 Li abundances from observations.

1998 ◽  
Vol 13 (25) ◽  
pp. 4409-4423 ◽  
Author(s):  
DAVID O. CALDWELL

New experimental results, if correct, require at least one light sterile neutrino, in addition to the three active ones, to accommodate the mass differences required to explain the solar νe deficit, the anomalous μ/e ratio produced by atmospheric neutrinos, and either the candidate events for νμ→ νe (or [Formula: see text]) from the LSND experiment, or the possible need for a hot component of dark matter. This neutrino mass pattern can not only accommodate all these four requirements, but also provide a robust solution to a problem presently making heavy-element synthesis by supernovae impossible and resolve a possible discrepancy between big bang nucleosynthesis theory and observations.


Author(s):  
Michael Kachelriess

The Boltzmann equations, which describe processes as diverse as the evolution of the dark matter density, big bang nucleosynthesis or recombination, are derived. The Gamov criterion states that processes freeze-out when their rate becomes smaller than the Hubble rate. It is demonstrated that the mass of any thermal relic is bounded by ≲ 20TeV, while the abundance of a cold dark matter particle with 〈σ‎v〉 ≃ 3 × 10−26 cm3/s corresponds to the observed one, Ω‎CDM = 0.2. Big bang nucleosynthesis, which successfully explains the abundance of light elements like D and 4He, is discussed.


2020 ◽  
Vol 80 (2) ◽  
Author(s):  
Lian-Bao Jia

Abstract A small fraction of millicharged dark matter (DM) is considered in the literature to give an interpretation of the enhanced 21-cm absorption at the cosmic dawn. Here we focus on the case that the main component of DM is self-interacting dark matter (SIDM), motivated by the small-scale problems. For self-interactions of SIDM being compatible from dwarf to cluster scales, velocity-dependent self-interactions mediated by a light scalar $$\phi $$ϕ are considered. For fermionic SIDM $$\Psi $$Ψ, the main annihilation mode $$\Psi \bar{\Psi } \rightarrow \phi \phi $$ΨΨ¯→ϕϕ is a p-wave process. The thermal transition of SIDM $$\rightleftarrows \phi \rightleftarrows $$⇄ϕ⇄ standard model (SM) particles in the early universe sets a lower bound on couplings of $$\phi $$ϕ to SM particles, which has been excluded by direct detections of DM, and here we consider SIDM in thermal equilibrium via millicharged DM. For $$m_\phi>$$mϕ> twice millicharged DM mass, $$\phi $$ϕ could decay quickly and avoid excess energy injection to big bang nucleosynthesis. Thus, the $$\phi $$ϕ–SM particle couplings could be very tiny and evade direct detections of DM. The picture of weakly interacting massive particle (WIMP)–nucleus scattering with contact interactions fails for SIDM–nucleus scattering with a light mediator, and a method is explored in this paper with which a WIMP search result can be converted into the hunt for SIDM in direct detections.


2015 ◽  
Vol 93 (12) ◽  
pp. 1561-1565
Author(s):  
Ng. K. Francis

We construct the neutrino mass models with non-vanishing θ13 and estimate the baryon asymmetry of the universe and subsequently derive the constraints on the inflaton mass and the reheating temperature after inflation. The great discovery of this decade, the detection of Higgs boson of mass 126 GeV and nonzero θ13, makes leptogenesis all the more exciting. Besides, the neutrino mass model is compatible with inflaton mass 1010–1013 GeV corresponding to reheating temperature TR ∼ 105–107 GeV to overcome the gravitino constraint in supersymmetry and big bang nucleosynthesis. When Daya Bay data θ13 ≈ 9° is included in the model, τ predominates over e and μ contributions, which are indeed a good sign. It is shown that neutrino mass models for a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Soo-Min Choi ◽  
Jinsu Kim ◽  
Pyungwon Ko ◽  
Jinmian Li

Abstract Multi-component dark matter scenarios are studied in the model with U(1)X dark gauge symmetry that is broken into its product subgroup Z2 × Z3 á la Krauss-Wilczek mechanism. In this setup, there exist two types of dark matter fields, X and Y, distinguished by different Z2 × Z3 charges. The real and imaginary parts of the Z2-charged field, XR and XI, get different masses from the U(1)X symmetry breaking. The field Y, which is another dark matter candidate due to the unbroken Z3 symmetry, belongs to the Strongly Interacting Massive Particle (SIMP)-type dark matter. Both XI and XR may contribute to Y’s 3 → 2 annihilation processes, opening a new class of SIMP models with a local dark gauge symmetry. Depending on the mass difference between XI and XR, we have either two-component or three-component dark matter scenarios. In particular two- or three-component SIMP scenarios can be realised not only for small mass difference between X and Y, but also for large mass hierarchy between them, which is a new and unique feature of the present model. We consider both theoretical and experimental constraints, and present four case studies of the multi-component dark matter scenarios.


2005 ◽  
Vol 752 ◽  
pp. 522-531 ◽  
Author(s):  
A. Coc ◽  
C. Angulo ◽  
E. Vangioni-Flam ◽  
P. Descouvemont ◽  
A. Adahchour

2014 ◽  
Vol 30 ◽  
pp. 1460256 ◽  
Author(s):  
Pierre Salati

The astronomical dark matter is an essential component of the Universe and yet its nature is still unresolved. It could be made of neutral and massive elementary particles which are their own antimatter partners. These dark matter species undergo mutual annihilations whose effects are briefly reviewed in this article. Dark matter annihilation plays a key role at early times as it sets the relic abundance of the particles once they have decoupled from the primordial plasma. A weak annihilation cross section naturally leads to a cosmological abundance in agreement with observations. Dark matter species subsequently annihilate — or decay — during Big Bang nucleosynthesis and could play havoc with the light element abundances unless they offer a possible solution to the 7 Li problem. They could also reionize the intergalactic medium after recombination and leave visible imprints in the cosmic microwave background. But one of the most exciting aspects of the question lies in the possibility to indirectly detect the dark matter species through the rare antimatter particles — antiprotons, positrons and antideuterons — which they produce as they currently annihilate inside the galactic halo. Finally, the effects of dark matter annihilation on stars is discussed.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950065 ◽  
Author(s):  
Tahani R. Makki ◽  
Mounib F. El Eid ◽  
Grant J. Mathews

The light elements and their isotopes were produced during standard big bang nucleosynthesis (SBBN) during the first minutes after the creation of the universe. Comparing the calculated abundances of these light species with observed abundances, it appears that all species match very well except for lithium (7Li) which is overproduced by the SBBN. This discrepancy is rather challenging for several reasons to be considered on astrophysical and on nuclear physics ground, or by invoking nonstandard assumptions which are the focus of this paper. In particular, we consider a variation of the chemical potentials of the neutrinos and their temperature. In addition, we investigated the effect of dark matter on 7Li production. We argue that including nonstandard assumptions can lead to a significant reduction of the 7Li abundance compared to that of SBBN. This aspect of lithium production in the early universe may help to resolve the outstanding cosmological lithium problem.


2019 ◽  
Vol 219 ◽  
pp. 03002 ◽  
Author(s):  
Shannon F. Hoogerheide ◽  
Jimmy Caylor ◽  
Evan R. Adamek ◽  
Eamon S. Anderson ◽  
Ripan Biswas ◽  
...  

A precise value of the neutron lifetime is important in several areas of physics, including determinations of the quark-mixing matrix element |Vud|, related tests of the Standard Model, and predictions of light element abundances in Big Bang Nucleosynthesis models. We report the progress on a new measurement of the neutron lifetime utilizing the cold neutron beam technique. Several experimental improvements in both neutron and proton counting that have been developed over the last decade are presented. This new effort should yield a final uncertainty on the lifetime of 1 s with an improved understanding of the systematic effects.


Sign in / Sign up

Export Citation Format

Share Document