scholarly journals Approximate Bacon-Shor code and holography

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
ChunJun Cao ◽  
Brad Lackey

Abstract We explicitly construct a class of holographic quantum error correction codes with non-trivial centers in the code subalgebra. Specifically, we use the Bacon-Shor codes and perfect tensors to construct a gauge code (or a stabilizer code with gauge-fixing), which we call the holographic hybrid code. This code admits a local log-depth encoding/decoding circuit, and can be represented as a holographic tensor network which satisfies an analog of the Ryu-Takayanagi formula and reproduces features of the sub-region duality. We then construct approximate versions of the holographic hybrid codes by “skewing” the code subspace, where the size of skewing is analogous to the size of the gravitational constant in holography. These approximate hybrid codes are not necessarily stabilizer codes, but they can be expressed as the superposition of holographic tensor networks that are stabilizer codes. For such constructions, different logical states, representing different bulk matter content, can “back-react” on the emergent geometry, resembling a key feature of gravity. The locality of the bulk degrees of freedom becomes subspace-dependent and approximate. Such subspace-dependence is manifest from the point of view of the “entanglement wedge” and bulk operator reconstruction from the boundary. Exact complementary error correction breaks down for certain bipartition of the boundary degrees of freedom; however, a limited, state-dependent form is preserved for particular subspaces. We also construct an example where the connected two-point correlation functions can have a power-law decay. Coupled with known constraints from holography, a weakly back-reacting bulk also forces these skewed tensor network models to the “large N limit” where they are built by concatenating a large N number of copies.

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 604
Author(s):  
Clement Delcamp ◽  
Norbert Schuch

We define two dual tensor network representations of the (3+1)d toric code ground state subspace. These two representations, which are obtained by initially imposing either family of stabilizer constraints, are characterized by different virtual symmetries generated by string-like and membrane-like operators, respectively. We discuss the topological properties of the model from the point of view of these virtual symmetries, emphasizing the differences between both representations. In particular, we argue that, depending on the representation, the phase diagram of boundary entanglement degrees of freedom is naturally associated with that of a (2+1)d Hamiltonian displaying either a global or a gauge Z2-symmetry.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Chun-Jun Cao

In this note, I review a recent approach to quantum gravity that “gravitizes” quantum mechanics by emerging geometry and gravity from complex quantum states. Drawing further insights from tensor network toy models in AdS/CFT, I propose that approximate quantum error correction codes, when re-adapted into the aforementioned framework, also have promise in emerging gravity in near-flat geometries.


The success of the Program of housing stock renovation in Moscow depends on the efficiency of resource management. One of the main urban planning documents that determine the nature of the reorganization of residential areas included in the Program of renovation is the territory planning project. The implementation of the planning project is a complex process that has a time point of its beginning and end, and also includes a set of interdependent parallel-sequential activities. From an organizational point of view, it is convenient to use network planning and management methods for project implementation. These methods are based on the construction of network models, including its varieties – a Gantt chart. A special application has been developed to simulate the implementation of planning projects. The article describes the basic principles and elements of modeling. The list of the main implementation parameters of the Program of renovation obtained with the help of the developed software for modeling is presented. The variants of using the results obtained for a comprehensive analysis of the implementation of large-scale urban projects are proposed.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2009
Author(s):  
Fatemeh Najafi ◽  
Masoud Kaveh ◽  
Diego Martín ◽  
Mohammad Reza Mosavi

Traditional authentication techniques, such as cryptographic solutions, are vulnerable to various attacks occurring on session keys and data. Physical unclonable functions (PUFs) such as dynamic random access memory (DRAM)-based PUFs are introduced as promising security blocks to enable cryptography and authentication services. However, PUFs are often sensitive to internal and external noises, which cause reliability issues. The requirement of additional robustness and reliability leads to the involvement of error-reduction methods such as error correction codes (ECCs) and pre-selection schemes that cause considerable extra overheads. In this paper, we propose deep PUF: a deep convolutional neural network (CNN)-based scheme using the latency-based DRAM PUFs without the need for any additional error correction technique. The proposed framework provides a higher number of challenge-response pairs (CRPs) by eliminating the pre-selection and filtering mechanisms. The entire complexity of device identification is moved to the server side that enables the authentication of resource-constrained nodes. The experimental results from a 1Gb DDR3 show that the responses under varying conditions can be classified with at least a 94.9% accuracy rate by using CNN. After applying the proposed authentication steps to the classification results, we show that the probability of identification error can be drastically reduced, which leads to a highly reliable authentication.


Author(s):  
Mathias Fink

Time-reversal invariance can be exploited in wave physics to control wave propagation in complex media. Because time and space play a similar role in wave propagation, time-reversed waves can be obtained by manipulating spatial boundaries or by manipulating time boundaries. The two dual approaches will be discussed in this paper. The first approach uses ‘time-reversal mirrors’ with a wave manipulation along a spatial boundary sampled by a finite number of antennas. Related to this method, the role of the spatio-temporal degrees of freedom of the wavefield will be emphasized. In a second approach, waves are manipulated from a time boundary and we show that ‘instantaneous time mirrors’, mimicking the Loschmidt point of view, simultaneously acting in the entire space at once can also radiate time-reversed waves.


2005 ◽  
Vol 4 (9) ◽  
pp. 586 ◽  
Author(s):  
Jaime A. Anguita ◽  
Ivan B. Djordjevic ◽  
Mark A. Neifeld ◽  
Bane V. Vasic

Sign in / Sign up

Export Citation Format

Share Document