scholarly journals Size and momentum of an infalling particle in the black hole interior

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Felix M. Haehl ◽  
Ying Zhao

Abstract The future interior of black holes in AdS/CFT can be described in terms of a quantum circuit. We investigate boundary quantities detecting properties of this quantum circuit. We discuss relations between operator size, quantum complexity, and the momentum of an infalling particle in the black hole interior. We argue that the trajectory of the infalling particle in the interior close to the horizon is related to the growth of operator size. The notion of size here differs slightly from the size which has previously been related to momentum of exterior particles and provides an interesting generalization. The fact that both exterior and interior momentum are related to operator size growth is a manifestation of complementarity.

2005 ◽  
Vol 14 (12) ◽  
pp. 2257-2261 ◽  
Author(s):  
HRVOJE NIKOLIĆ

During the black hole radiation, the interior contains all the matter of the initial black hole, together with the negative energy quanta entangled with the exterior Hawking radiation. Neither the initial matter nor the negative energy quanta evaporate from the black hole interior. Therefore, the information is not lost during the radiation. The black hole mass eventually drops to zero in semiclassical gravity, but this semiclassical state has an infinite temperature and still contains all the initial matter together with the negative energy entangled with the exterior radiation.


2021 ◽  
Author(s):  
Wanpeng Tan

A sufficiently massive star in the end of its life will inevitably collapse into a black hole as more deconfined degrees of freedom make the core ever softer. One possible way to avoid the singularity in the end is by dimensional phase transition of spacetime. Indeed, the black hole interior, two-dimensional in nature, can be described well as a perfect fluid of free massless Majorana fermions and gauge bosons under a 2-d supersymmetric mirror model with new understanding of emergent gravity from dimensional evolution of spacetime. In particular, the 2-d conformal invariance of the black hole gives rise to desired consistent results for the interior microphysics and structures including its temperature, density, and entropy.


2020 ◽  
Author(s):  
Wanpeng Tan

New physics and models for the most compact astronomical objects - neutron / quark stars and black holes are proposed. Under the new supersymmetric mirror models, neutron stars at least heavy ones could be born from hot deconfined quark matter in the core with a mass limit less than $2.5 M_\odot$. Even heavier cores will inevitably collapse into black holes as quark matter with more deconfined quark flavors becomes ever softer during the staged restoration of flavor symmetry. With new understanding of gravity as mean field theories emergent from the underlying quantum theories for providing the smooth background spacetime geometry for quantum particles, the black hole interior can be described well as a perfect fluid of free massless Majorana fermions and gauge bosons under the new genuine 2-d model. In particular, the conformal invariance on a 2-d torus for the black hole gives rise to desired consistent results for the interior microphysics and structures including its temperature, density, and entropy. Conjectures for further studies of the black hole and the early universe are also discussed in the new framework.


Author(s):  
Netta Engelhardt ◽  
Geoff Penington ◽  
Arvin Shahbazi-Moghaddam

Abstract We argue that novel (highly nonclassical) quantum extremal surfaces play a crucial role in reconstructing the black hole interior even for isolated, single-sided, non-evaporating black holes (i.e. with no auxiliary reservoir). Specifically, any code subspace where interior outgoing modes can be excited will have a quantum extremal surface in its maximally mixed state. We argue that as a result, reconstruction of interior outgoing modes is always exponentially complex. Our construction provides evidence in favor of a strong Python’s lunch proposal: that nonminimal quantum extremal surfaces are the exclusive source of exponential complexity in the holographic dictionary. We also comment on the relevance of these quantum extremal surfaces to the geometrization of state dependence in the typicality arguments for firewalls.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Marc Geiller ◽  
Etera R. Livine ◽  
Francesco Sartini

We reveal an \mathfrak{iso}(2,1)𝔦𝔰𝔬(2,1) Poincar'e algebra of conserved charges associated with the dynamics of the interior of black holes. The action of these Noether charges integrates to a symmetry of the gravitational system under the Poincar'e group ISO(2,1)(2,1), which allows to describe the evolution of the geometry inside the black hole in terms of geodesics and horocycles of AdS{}_22. At the Lagrangian level, this symmetry corresponds to M"obius transformations of the proper time together with translations. Remarkably, this is a physical symmetry changing the state of the system, which also naturally forms a subgroup of the much larger \textrm{BMS}_{3}=\textrm{Diff}(S^1)\ltimes\textrm{Vect}(S^1)BMS3=Diff(S1)⋉Vect(S1) group, where S^1S1 is the compactified time axis. It is intriguing to discover this structure for the black hole interior, and this hints at a fundamental role of BMS symmetry for black hole physics. The existence of this symmetry provides a powerful criterion to discriminate between different regularization and quantization schemes. Following loop quantum cosmology, we identify a regularized set of variables and Hamiltonian for the black hole interior, which allows to resolve the singularity in a black-to-white hole transition while preserving the Poincar'e symmetry on phase space. This unravels new aspects of symmetry for black holes, and opens the way towards a rigorous group quantization of the interior.


2018 ◽  
Vol 168 ◽  
pp. 01001 ◽  
Author(s):  
Valeri P. Frolov

We briefly discuss non-singular black hole models, with the main focus on the properties of non-singular evaporating black holes. Such black holes possess an apparent horizon, however the event horizon may be absent. In such a case, the information from the black hole interior may reach the external observer after the complete evaporation of the black hole. This model might be used for the resolution of the information loss puzzle. However, as we demonstrate, in a general case the quantum radiation emitted from the black hole interior, calculated in the given black hole background, is very large. This outburst of the radiation is exponentially large for models with the redshift function α = 1. We show that it can be suppressed by including a non-trivial redshift function. However, even this suppression is not enough to guarantee self-consistency of the model. This problem is a manifestation of a general problem, known as the "mass inflation". We briefly comment on possible ways to overcome this problem in the models of non-singular evaporating black holes.


2015 ◽  
Vol 24 (12) ◽  
pp. 1543004 ◽  
Author(s):  
Emil J. Martinec

Combining a variety of results in string theory and general relativity, a picture of the black hole interior is developed wherein spacetime caps off at an inner horizon and the inter-horizon region is occupied by a Hagedorn gas of a very low tension state of fractionated branes. This picture leads to natural resolutions of a variety of puzzles concerning quantum black holes.


Perturbations of black holes (Schwarzschild, Reissner-Nordstrøm and Kerr) can be treated by simple radial wave equations. It is shown that the massless scalar radial equation is a form of the spin-weighted spheroidal wave equation. The region in r corresponding to the usual angular argument (cos 0, 0 real) for such functions is the black hole interior, r E (r - r + ) where r - , r + are the inner and outer horizon radii respectively. We restrict ourselves to axisymmetric scalar waves. (Because of the spherical symmetry this is no restriction in the Schwarzschild and Reissner-Nordstrøm backgrounds, but it is a physical restriction in the Kerr background.) In these cases the spin-weighted spheroidal harmonics correspond to imaginary-frequency waves, i.e. to exponentially growing or decaying waves that fall inward across the outer horizon r+ and are converted to waves moving in the opposite direction as they cross the r _-horizon (r is a timelike coordinate when r e( r _ , r + )). These modes are exactly analogous to the external quasi-normal modes of the black hole. There is always one zero-frequency mode, and l non-zero imaginaryfrequency modes. Here l is the angular momentum eigen-number associated with the angular decomposition.


2002 ◽  
Vol 17 (15n17) ◽  
pp. 1047-1057 ◽  
Author(s):  
DANIEL SUDARSKY

We discuss the conditions under which one can expect to have the usual identification of black hole entropy with the area of the horizon. We then construct an example in which the actual presence of the event horizon on a given hypersurface depends on a quantum event in which a certain quantum variable acquires a value and which occurs in the future of the given hypersurface. This situation indicates that there is something fundamental that is missing in the most popular of the current approaches towards the construction of a theory of quantum gravity, or, alternatively, that there is something fundamental that we do not understand about entropy in general, or at least in its association with black holes.


Universe ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 93 ◽  
Author(s):  
Alexander Y. Yosifov ◽  
Lachezar G. Filipov

We argue that the problem of calculating retention time scales in young black holes is a problem of relative state complexity. In particular, we suggest that Alice’s ability to estimate the time scale for a perturbed black hole to release the extra n qubits comes down to her decoding the Hilbert space of the Hawking radiation. We then demonstrate the decoding task Alice faces is very difficult, and in order to calculate the relative state complexity she would either need to act with an exponentially complex unitary operator or apply an extremely fine-tuned future precursor operator to the perturbed state in S U ( 2 K ) .


Sign in / Sign up

Export Citation Format

Share Document