scholarly journals Higgs inflation, vacuum stability, and leptogenesis

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Neil D. Barrie ◽  
Akio Sugamoto ◽  
Tatsu Takeuchi ◽  
Kimiko Yamashita

Abstract We consider the introduction of a complex scalar field carrying a global lepton number charge to the Standard Model and the Higgs inflation framework. The conditions are investigated under which this model can simultaneously ensure Higgs vacuum stability up to the Planck scale, successful inflation, non-thermal Leptogenesis via the pendulum mechanism, and light neutrino masses. These can be simultaneously achieved when the scalar lepton is minimally coupled to gravity, that is, when standard Higgs inflation and reheating proceed without the interference of the additional scalar degrees of freedom. If the scalar lepton also has a non-minimal coupling to gravity, a multi-field inflation scenario is induced, with interesting interplay between the successful inflation constraints and those from vacuum stability and Leptogenesis. The parameter region that can simultaneously achieve the above goals is explored.

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Gabriela Barenboim ◽  
Jessica Turner ◽  
Ye-Ling Zhou

AbstractIn this work we demonstrate that non-zero neutrino masses can be generated from gravitational interactions. We solve the Schwinger–Dyson equations to find a non-trivial vacuum thereby determining the neutrino condensate scale and the number of new particle degrees of freedom required for gravitationally induced dynamical chiral symmetry breaking. We show for minimal beyond the Standard Model particle content, the scale of the condensation occurs close to the Planck scale.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Guillem Domènech ◽  
Mark Goodsell ◽  
Christof Wetterich

Abstract A general prediction from asymptotically safe quantum gravity is the approximate vanishing of all quartic scalar couplings at the UV fixed point beyond the Planck scale. A vanishing Higgs doublet quartic coupling near the Planck scale translates into a prediction for the ratio between the mass of the Higgs boson MH and the top quark Mt. If only the standard model particles contribute to the running of couplings below the Planck mass, the observed MH∼ 125 GeV results in the prediction for the top quark mass Mt∼ 171 GeV, in agreement with recent measurements. In this work, we study how the asymptotic safety prediction for the top quark mass is affected by possible physics at an intermediate scale. We investigate the effect of an SU(2) triplet scalar and right-handed neutrinos, needed to explain the tiny mass of left-handed neutrinos. For pure seesaw II, with no or very heavy right handed neutrinos, the top mass can increase to Mt ∼ 172.5 GeV for a triplet mass of M∆ ∼ 108GeV. Right handed neutrino masses at an intermediate scale increase the uncertainty of the predictions of Mt due to unknown Yukawa couplings of the right-handed neutrinos and a cubic interaction in the scalar potential. For an appropriate range of Yukawa couplings there is no longer an issue of vacuum stability.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Matthew J. Dolan ◽  
Tomasz P. Dutka ◽  
Raymond R. Volkas

Abstract We analyse the experimental limits on the breaking scale of Pati-Salam extensions of the Standard Model. These arise from the experimental limits on rare-meson decay processes mediated at tree-level by the vector leptoquark in the model. This leptoquark ordinarily couples to both left- and right-handed SM fermions and therefore the meson decays do not experience a helicity suppression. We find that the current limits vary from $$ \mathcal{O} $$ O (80–2500) TeV depending on the choice of matrix structure appearing in the relevant three-generational charged-current interactions. We extensively analyse scenarios where additional fermionic degrees of freedom are introduced, transforming as complete Pati-Salam multiplets. These can lower the scales of Pati-Salam breaking through mass-mixing within the charged-lepton and down-quark sectors, leading to a helicity suppression of the meson decay widths which constrain Pati-Salam breaking. We find four multiplets with varying degrees of viability for this purpose: an SU(2)L/R bidoublet, a pair of SU(4) decuplets and either an SU(2)L or SU(2)R triplet all of which contain heavy exotic versions of the SM charged leptons. We find that the Pati-Salam limits can be as low as $$ \mathcal{O} $$ O (5–150) TeV with the addition of these four multiplets. We also identify an interesting possible connection between the smallness of the neutrino masses and a helicity suppression of the Pati-Salam limits for three of the four multiplets.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Sanjoy Mandal ◽  
Rahul Srivastava ◽  
José W. F. Valle

Abstract We investigate the stability of Higgs potential in inverse seesaw models. We derive the full two-loop RGEs of the relevant parameters, such as the quartic Higgs self-coupling, taking thresholds into account. We find that for relatively large Yukawa couplings the Higgs quartic self-coupling goes negative well below the Standard Model instability scale ∼ 1010 GeV. We show, however, that the “dynamical” inverse seesaw with spontaneous lepton number violation can lead to a completely consistent and stable Higgs vacuum up to the Planck scale.


2020 ◽  
Vol 35 (21) ◽  
pp. 2050117
Author(s):  
Heng-Yu Chen ◽  
Ilia Gogoladze ◽  
Shan Hu ◽  
Tianjun Li ◽  
Lina Wu

We present a class of nonsupersymmetric models in which the so-called critical Higgs inflation [Formula: see text] can be naturally realized without using specific values for Higgs and top quark masses. In these scenarios, the Standard Model (SM) vacuum stability problem, gauge coupling unification, neutrino mass generation and Higgs inflation mechanism are linked to each other. We adopt in our models Type I seesaw mechanism for neutrino masses. An appropriate choice of the Type I seesaw scale allows us to have an arbitrarily small but positive value of SM Higgs quartic coupling around the inflation scale. We present a few benchmark points where we show that the scalar spectral indices are around 0.9626 and 0.9685 for the number of [Formula: see text]-folding [Formula: see text] and [Formula: see text], respectively. The tensor-to-scalar ratios are of the order of [Formula: see text]. The running of the scalar spectral index is negative and is of the order of [Formula: see text].


2015 ◽  
Vol 30 (25) ◽  
pp. 1530056 ◽  
Author(s):  
Kerson Huang

Quantum vorticity occurs in superfluidity, which arises from a spatial variation of the quantum phase. As such, it can occur in diverse systems over a wide range of scales, from the electroweak sector and QCD of the standard model of particle theory, through the everyday world, to the cosmos. I review the observable manifestations, and their unified description in terms of an order parameter that is a complex scalar field.


2015 ◽  
Vol 30 (34) ◽  
pp. 1550189 ◽  
Author(s):  
Florian Loebbert ◽  
Jan Plefka

We compute the quantum gravitational contributions to the Standard Model (SM) effective potential and analyze their effects on the Higgs vacuum stability in the framework of effective field theory. Einstein gravity necessarily implies the existence of higher dimension [Formula: see text] and [Formula: see text] operators with novel couplings [Formula: see text] in the Higgs sector. The beta functions of these couplings are established and the impact of the gravity induced contributions on electroweak vacuum stability is studied. We find that the true minimum of the SM effective potential now lies below the Planck scale for almost the entire parameter space [Formula: see text]. In addition quantum gravity is shown to contribute to the minimal value of the SM next-to-leading order (NLO) effective potential at the percent level. The quantum gravity induced contributions yield a metastable vacuum for a large fraction of the parameter space in the flowing couplings [Formula: see text].


2020 ◽  
Vol 75 (12) ◽  
pp. 1051-1062
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a new matrix dynamics at the Planck scale, building on the theory of trace dynamics and Connes noncommutative geometry program. This is a Lagrangian dynamics in which the matrix degrees of freedom are made from Grassmann numbers, and the Lagrangian is trace of a matrix polynomial. Matrices made from even grade elements of the Grassmann algebra are called bosonic, and those made from odd grade elements are called fermionic—together they describe an ‘aikyon’. The Lagrangian of the theory is invariant under global unitary transformations and describes gravity and Yang–Mills fields coupled to fermions. In the present article, we provide a basic definition of spin angular momentum in this matrix dynamics and introduce a bosonic(fermionic) configuration variable conjugate to the spin of a boson(fermion). We then show that at energies below Planck scale, where the matrix dynamics reduces to quantum theory, fermions have half-integer spin (in multiples of Planck’s constant), and bosons have integral spin. We also show that this definition of spin agrees with the conventional understanding of spin in relativistic quantum mechanics. Consequently, we obtain an elementary proof for the spin-statistics connection. We then motivate why an octonionic space is the natural space in which an aikyon evolves. The group of automorphisms in this space is the exceptional Lie group G2 which has 14 generators [could they stand for the 12 vector bosons and two degrees of freedom of the graviton?]. The aikyon also resembles a closed string, and it has been suggested in the literature that 10-D string theory can be represented as a 2-D string in the 8-D octonionic space. From the work of Cohl Furey and others it is known that the Dixon algebra made from the four division algebras [real numbers, complex numbers, quaternions and octonions] can possibly describe the symmetries of the standard model. In the present paper we outline how in our work the Dixon algebra arises naturally and could lead to a unification of gravity with the standard model. From this matrix dynamics, local quantum field theory arises as a low energy limit of this Planck scale dynamics of aikyons, and classical general relativity arises as a consequence of spontaneous localisation of a large number of entangled aikyons. We propose that classical curved space–time and Yang–Mills fields arise from an effective gauging which results from the collection of symmetry groups of the spontaneously localised fermions. Our work suggests that we live in an eight-dimensional octonionic universe, four of these dimensions constitute space–time and the other four constitute the octonionic internal directions on which the standard model forces live.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
M. J. Neves ◽  
Nobuchika Okada ◽  
Satomi Okada

Abstract We present a minimal extension of the left-right symmetric model based on the gauge group SU(3)c× SU(2)L× SU(2)R× U(1)B−L× U(1)X, in which a vector-like fermion pair (ζL and ζR) charged under the U(1)B−L× U(1)X symmetry is introduced. Associated with the symmetry breaking of the gauge group SU(2)R× U(1)B−L× U(1)X down to the Standard Model (SM) hypercharge U(1)Y, Majorana masses for ζL,R are generated and the lightest mass eigenstate plays a role of the dark matter (DM) in our universe by its communication with the SM particles through a new neutral gauge boson “X”. We consider various phenomenological constraints of this DM scenario, such as the observed DM relic density, the LHC Run-2 constraints from the search for a narrow resonance, and the perturbativity of the gauge couplings below the Planck scale. Combining all constraints, we identify the allowed parameter region which turns out to be very narrow. A significant portion of the currently allowed parameter region will be tested by the High-Luminosity LHC experiments.


Sign in / Sign up

Export Citation Format

Share Document