scholarly journals Contribution of cell death signaling to blood vessel formation

2021 ◽  
Vol 78 (7) ◽  
pp. 3247-3264
Author(s):  
Nathalie Tisch ◽  
Carmen Ruiz de Almodóvar

AbstractThe formation of new blood vessels is driven by proliferation of endothelial cells (ECs), elongation of maturing vessel sprouts and ultimately vessel remodeling to create a hierarchically structured vascular system. Vessel regression is an essential process to remove redundant vessel branches in order to adapt the final vessel density to the demands of the surrounding tissue. How exactly vessel regression occurs and whether and to which extent cell death contributes to this process has been in the focus of several studies within the last decade. On top, recent findings challenge our simplistic view of the cell death signaling machinery as a sole executer of cellular demise, as emerging evidences suggest that some of the classic cell death regulators even promote blood vessel formation. This review summarizes our current knowledge on the role of the cell death signaling machinery with a focus on the apoptosis and necroptosis signaling pathways during blood vessel formation in development and pathology.

2019 ◽  
Author(s):  
Nathalie Tisch ◽  
Aida Freire-Valls ◽  
Rosario Yerbes ◽  
Isidora Paredes ◽  
Silvia La Porta ◽  
...  

ABSTRACTDuring developmental angiogenesis blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether and how cell death signaling molecules contribute to blood vessel formation is still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death-signaling pathway, regulates both cell death via apoptosis and necroptosis. Here we show that expression of Casp-8 in endothelial cells (ECs) is required for proper postnatal angiogenesis. EC specific Casp-8 knockout pups (Casp-8ECko) have reduced retinal angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting and migration independent of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 mitogen-activated protein kinase (MAPK) downstream of receptorinteracting serine/threonine-protein kinase 3 (RIPK3) and destabilization of VE-cadherin at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR), resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs is beneficial, as pathological neovascularization was reduced in Casp-8ECko pups. Taken together, we identify that Casp-8 signals in a cell-death independent manner in ECs during postnatal and pathological blood vessel formation.


2020 ◽  
Vol 21 (12) ◽  
pp. 4403 ◽  
Author(s):  
Sze Yuan Ho ◽  
Yuet Ping Kwan ◽  
Beiying Qiu ◽  
Alison Tan ◽  
Hannah Louise Murray ◽  
...  

Peroxisome proliferator-activated receptor (PPAR)β/δ is a member of the nuclear receptor superfamily of transcription factors, which plays fundamental roles in cell proliferation and differentiation, inflammation, adipogenesis, and energy homeostasis. Previous studies demonstrated a reduced choroidal neovascularization (CNV) in Pparβ/δ-deficient mice. However, PPARβ/δ’s role in physiological blood vessel formation and vessel remodeling in the retina has yet to be established. Our study showed that PPARβ/δ is specifically required for disordered blood vessel formation in the retina. We further demonstrated an increased arteriovenous crossover and wider venous caliber in Pparβ/δ-haplodeficient mice. In summary, these results indicated a critical role of PPARβ/δ in pathological angiogenesis and blood vessel remodeling in the retina.


2021 ◽  
Vol 22 (6) ◽  
pp. 2804
Author(s):  
Yasuo Yoshitomi ◽  
Takayuki Ikeda ◽  
Hidehito Saito-Takatsuji ◽  
Hideto Yonekura

Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.


Biomaterials ◽  
2012 ◽  
Vol 33 (7) ◽  
pp. 2097-2108 ◽  
Author(s):  
Duohong Zou ◽  
Zhiyuan Zhang ◽  
Jiacai He ◽  
Kai Zhang ◽  
Dongxia Ye ◽  
...  

2008 ◽  
Vol 107 (2) ◽  
pp. 118-127 ◽  
Author(s):  
Paulo Fernando Dias ◽  
Fernanda Vieira Berti ◽  
Jarbas Mota Siqueira Jr ◽  
Marcelo Maraschin ◽  
Antônio Ricardo Gagliardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document