scholarly journals Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983–2014

2016 ◽  
Vol 130 (1) ◽  
pp. 223-245 ◽  
Author(s):  
Friedrich Laidig ◽  
Hans-Peter Piepho ◽  
Dirk Rentel ◽  
Thomas Drobek ◽  
Uwe Meyer ◽  
...  
2019 ◽  
Vol 65 (2) ◽  
Author(s):  
Vera RAJICIC ◽  
Jelena MILIVOJEVIC ◽  
Vera POPOVIC ◽  
Snezana BRANKOVIC ◽  
Nenad DJURIC ◽  
...  

2006 ◽  
Vol 34 (1) ◽  
pp. 429-432 ◽  
Author(s):  
Daniela Horvat ◽  
Zdenko Loncaric ◽  
Vladimir Vukadinovic ◽  
Georg Drezner ◽  
Blazenka Bertic ◽  
...  

Euphytica ◽  
1995 ◽  
Vol 82 (1) ◽  
pp. 79-87 ◽  
Author(s):  
D. van Lill ◽  
J. L. Purchase

2021 ◽  
Author(s):  
Wenqiang Xie ◽  
Shuangshuang Wang ◽  
Xiaodong Yan

Abstract Winter wheat is widely planted in China. The changes of winter wheat yield and quality are related to the food security of human society. Climate change has an important impact on the yield and quality of winter wheat. Diurnal temperature range (DTR) is an important factor affecting the yield and protein content of winter wheat. Furthermore, climate model is one of the main sources of error in crop model simulations of yields. Therefore, how to improve the accuracy of climate data has become an important concern for scholars.Previous model evaluations for the entire country or region cannot answer which model is suitable for the estimation of future winter wheat yield. Therefore, we evaluated the ability of climate models to simulate DTR within the range of winter wheat growing regions in China to identify the most suitable climate models for winter wheat yield and quality projections. The results show that CMIP6 models can basically reproduce the DTR of winter wheat-growing regions in China, but there are discrepancies in the simulations between nationwide and winter wheat-growing regions. EC-Earth3-Veg has the best simulation of climate DTR for wheat-growing regions (TS=0.848) and nationwide (TS=0.842), and ACCESS-CM2 has the strongest ability to simulate the annual growing season DTR (TS=0.46). In summary, in the estimation of future winter wheat yield, attention should be given to the selection of models suitable for the actual growing regions and the growing seasons of winter wheat.


2011 ◽  
Vol 91 (3) ◽  
pp. 497-508 ◽  
Author(s):  
P. R. Miller ◽  
E. J. Lighthiser ◽  
C. A. Jones ◽  
J. A. Holmes ◽  
T. L. Rick ◽  
...  

2008 ◽  
Vol 100 (6) ◽  
pp. 1527-1534 ◽  
Author(s):  
Zhenling Cui ◽  
Xinping Chen ◽  
Yuxin Miao ◽  
Fei Li ◽  
Fusuo Zhang ◽  
...  

2013 ◽  
Vol 105 (4) ◽  
pp. 1167-1175 ◽  
Author(s):  
Ellen B. Mallory ◽  
Heather Darby

Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 153
Author(s):  
Angelique Twizerimana ◽  
Etienne Niyigaba ◽  
Innocent Mugenzi ◽  
Wansim Aboubakar Ngnadong ◽  
Chuan Li ◽  
...  

Wheat (Triticum aestivum L.) is one of the main staple foods worldwide. Wide precise sowing (Wps) is a sowing method believed to produce the highest winter wheat grain yields; however, the reasons for its high yields and its effect on quality traits have not been effectively studied. Hence, a two-year field experiment was conducted to evaluate the effect of three sowing methods, dibbling (Db), drilling (Dr), and Wps and seed rates (112.5 kg ha−1, 150 kg ha−1, 187.5 kg ha−1, and 225 kg ha−1) on grain yield and the quality of winter wheat. Wps, Dr, and Db produced statistically similar results in terms of the grain yield and most of the quality traits measured. The grain yield increased significantly with the increasing rate, the highest being 7488.89 kg ha−1 at a seed rate of 225 kg ha−1. The total protein, albumin, and globulin were not affected by the sowing methods, but prolamin and glutelin were affected by the Dr and Wps, respectively. The total starch in both years, and the amylose and amylopectin in the first year, were affected only by the seed rates, with 60.11%, 23.2%, 38.63%, or higher values. The results indicated that for the wheat yield and quality traits, Wps, Dr and Db can mostly be used interchangeably. For the protein, starch, and grain yield, the suitable seed rates were 112.5 kg ha−1, 150 kg ha−1, and 225 kg ha−1, respectively.


Sign in / Sign up

Export Citation Format

Share Document