scholarly journals The effect of heat stress on sugar beet recombination

Author(s):  
Mikel Arrieta ◽  
Glenda Willems ◽  
Jérôme DePessemier ◽  
Isabelle Colas ◽  
Alexandra Burkholz ◽  
...  

Abstract Meiotic recombination plays a crucial role in plant breeding through the creation of new allelic combinations. Therefore, lack of recombination in some genomic regions constitutes a constraint for breeding programmes. In sugar beet, one of the major crops in Europe, recombination occurs mainly in the distal portions of the chromosomes, and so the development of simple approaches to change this pattern is of considerable interest for future breeding and genetics. In the present study, the effect of heat stress on recombination in sugar beet was studied by treating F1 plants at 28 °C/25 °C (day/night) and genotyping the progeny. F1 plants were reciprocally backcrossed allowing the study of male and female meiosis separately. Genotypic data indicated an overall increase in crossover frequency of approximately one extra crossover per meiosis, with an associated increase in pericentromeric recombination under heat treatment. Our data indicate that the changes were mainly induced by alterations in female meiosis only, showing that heterochiasmy in sugar beet is reduced under heat stress. Overall, despite the associated decrease in fertility, these data support the potential use of heat stress to foster recombination in sugar beet breeding programmes.

2021 ◽  
Vol 19 (1) ◽  
pp. 44-57
Author(s):  
Sirine Werghi ◽  
Charfeddine Gharsallah ◽  
Nishi Kant Bhardwaj ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

AbstractDuring recent decades, global warming has intensified, altering crop growth, development and survival. To overcome changes in their environment, plants undergo transcriptional reprogramming to activate stress response strategies/pathways. To evaluate the genetic bases of the response to heat stress, Conserved DNA-derived Polymorphism (CDDP) markers were applied across tomato genome of eight cultivars. Despite scattered genotypes, cluster analysis allowed two neighbouring panels to be discriminate. Tomato CDDP-genotypic and visual phenotypic assortment permitted the selection of two contrasting heat-tolerant and heat-sensitive cultivars. Further analysis explored differential expression in transcript levels of genes, encoding heat shock transcription factors (HSFs, HsfA1, HsfA2, HsfB1), members of the heat shock protein (HSP) family (HSP101, HSP17, HSP90) and ascorbate peroxidase (APX) enzymes (APX1, APX2). Based on discriminating CDDP-markers, a protein functional network was built allowing prediction of candidate genes and their regulating miRNA. Expression patterns analysis revealed that miR156d and miR397 were heat-responsive showing a typical inverse relation with the abundance of their target gene transcripts. Heat stress is inducing a set of candidate genes, whose expression seems to be modulated through a complex regulatory network. Integrating genetic resource data is required for identifying valuable tomato genotypes that can be considered in marker-assisted breeding programmes to improve tomato heat tolerance.


2005 ◽  
Vol 3 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Sally L. Dillon ◽  
Peter K. Lawrence ◽  
Robert J. Henry

The Sorghum genus is extremely diverse both morphologically and geographically, however, relatively few of the 25 recognized species have been evaluated genetically. The apparent lack of basic knowledge pertaining to the levels of genetic diversity both within and between the 17 Australian wild species is a major obstacle to both their effective conservation and potential use in breeding programmes. Twelve Sorghum bicolor-derived simple sequence repeat (SSR) markers were evaluated for cross-species amplification in all 25 Sorghum species. The SSR markers were highly polymorphic, with diversity indices ranging from 0.59 to 0.99 with mean of 0.91. Five markers combined were able to differentiate 24 of the 25 Sorghum species, with intra-species polymorphism apparent. Sorghum bicolor-derived SSRs have proven to be an efficient source of markers for genetic diversity studies of the relatively poorly characterized Australian indigenous Sorghum species.


2003 ◽  
Vol 67 (1) ◽  
pp. 116-126 ◽  
Author(s):  
Christian Olesen ◽  
Morten Møller ◽  
Anne Grete Byskov

Author(s):  
Kuo-hai Yu ◽  
Hui-ru Peng ◽  
Zhong-fu Ni ◽  
Ying-yin Yao ◽  
Zhao-rong Hu ◽  
...  

Abstract This paper discusses wheat responses to heat stress (including morphological and growth, cellular structure and physiological responses) and the molecular-genetic bases of heat response in wheat (including topics on mapping quantitative trait loci related to heat tolerance and the role of functional genes in response to heat stress). The improvement of heat tolerance of wheat by comprehensive strategies is also described. It is believed that with the emphasis on genetic resource exploration and with better understanding of the molecular basis, heat tolerance will be improved during wheat breeding programmes in the future.


Author(s):  
Jorge Fernando Pereira

Abstract This chapter aims at describing the main physiological mechanisms associated with aluminium (Al) resistance in wheat and how the research about these mechanisms has evolved to its current status. Practical aspects of phenotyping and using the molecular basis to increase Al resistance, which can be easily introduced in breeding programmes, are detailed. This chapter discusses the reliability of methods to screen root growth under Al stress, the allelic variation of genes associated with the main Al resistance mechanism in wheat, the quantitative trait loci and genomic regions that might contain minor Al tolerance genes, the use of wheat wild relatives, the uncertainties of developing transgenic wheat for greater Al resistance and the development of Al-resistant lines of durum wheat (Triticum turgidum subsp. durum).


Author(s):  
T. Yan ◽  
A. C. Longland ◽  
W. H. Close ◽  
C. E. Sharpe ◽  
H. D. Keal

There is a considerable current interest in the feeding of high fibre diets to pregnant sows, with a view to gaining both economic and welfare advantages. The potential use of these diets will depend on the extent to which the fibrous materials are fermened in the hindgut, and the subsequent capacity of the products of the fermentation, that is VFAs, to meet the energy needs of the animal. Sugar beet pulp and wheat straw are two ingredients that have considerable potential as feed ingredients for sows. The present experiment was designed to study the extent to which diets containing high level of non-starch polysaccharides (NSP), largely from plain sugar beet pulp (SBP) or wheat straw (WS), influenced nutrient partition and the efficiency of ntrient utilisation in pregnant sows.


2020 ◽  
Vol 112 (5) ◽  
pp. 3579-3590
Author(s):  
Salah F. Abou‐Elwafa ◽  
Abu El‐Eyuoon A. Amin ◽  
Imad Eujayl

2021 ◽  

Abstract This 484-paged book is an extensively updated and expanded edition of the previous book by Simm, which focused on cattle and sheep. It has 14 chapters, the first chapter in the book sets the scene for modern livestock breeding, by looking at the origins and roles of today's livestock breeds. The next four chapters deal with the scientific principles of livestock improvement. Chapter 2 outlines some of the basic principles in genetics and attempts to illustrate the link between genes and the performance of individual farm animals, or populations of them. In Chapter 3 the main strategies for genetic improvement are discussed. The factors which affect responses to within-breed selection, and some of the tools and technologies used, especially for more effective within-breed selection, are discussed in Chapters 4 and 5. Chapter 6 explores in more depth how we analyse variation in farm animals. Chapter 7 discusses approaches to predicting breeding values. Chapters 8 to 13 deal with the application of these principles in practical breeding programmes in dairy cattle, beef cattle, sheep and goats, poultry, pigs and aquaculture. Finally, Chapter 14 discusses some of the key societal, technical and ethical challenges facing farm animal production in general, and animal breeding and genetics in particular. It discusses how livestock breeders, scientists and others might respond to ensure wide societal and animal benefits from future breeding schemes. There is a glossary of technical terms at the end of the book.


Sign in / Sign up

Export Citation Format

Share Document