Insights into the heat-responsive transcriptional network of tomato contrasting genotypes

2021 ◽  
Vol 19 (1) ◽  
pp. 44-57
Author(s):  
Sirine Werghi ◽  
Charfeddine Gharsallah ◽  
Nishi Kant Bhardwaj ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

AbstractDuring recent decades, global warming has intensified, altering crop growth, development and survival. To overcome changes in their environment, plants undergo transcriptional reprogramming to activate stress response strategies/pathways. To evaluate the genetic bases of the response to heat stress, Conserved DNA-derived Polymorphism (CDDP) markers were applied across tomato genome of eight cultivars. Despite scattered genotypes, cluster analysis allowed two neighbouring panels to be discriminate. Tomato CDDP-genotypic and visual phenotypic assortment permitted the selection of two contrasting heat-tolerant and heat-sensitive cultivars. Further analysis explored differential expression in transcript levels of genes, encoding heat shock transcription factors (HSFs, HsfA1, HsfA2, HsfB1), members of the heat shock protein (HSP) family (HSP101, HSP17, HSP90) and ascorbate peroxidase (APX) enzymes (APX1, APX2). Based on discriminating CDDP-markers, a protein functional network was built allowing prediction of candidate genes and their regulating miRNA. Expression patterns analysis revealed that miR156d and miR397 were heat-responsive showing a typical inverse relation with the abundance of their target gene transcripts. Heat stress is inducing a set of candidate genes, whose expression seems to be modulated through a complex regulatory network. Integrating genetic resource data is required for identifying valuable tomato genotypes that can be considered in marker-assisted breeding programmes to improve tomato heat tolerance.

1999 ◽  
Vol 276 (5) ◽  
pp. R1506-R1515 ◽  
Author(s):  
Alina Maloyan ◽  
Aaron Palmon ◽  
Michal Horowitz

It has been previously shown that heat acclimation leads to an elevated basal level of 72-kDa heat shock protein (HSP72). Augmented expression of HSP72 is considered as a cytoprotective response. This led us to hypothesize that alterations in the heat shock protein (HSP) defense pathway are an integral part of the heat acclimation repertoire. To investigate this, we studied the temporal profile of basal HSP expression upon acclimation and the dynamics of their accumulation subsequent to acute heat stress (HS). In parallel, HSP72 mRNA level before and after HS was measured. For comparison, HSC mRNA [the constitutive member of 70-kDa HSP (HSP70) family] was measured in similar conditions. Heat acclimation was attained by continuous exposure of rats to 34°C for 0, 1, 2, and 30 days. HS was attained by exposure to 41 or 43°C for 2 h. Thermoregulatory capacity of the rats was defined by rectal temperature, heating rate, and the cumulative heat strain invoked during HS. HSP72 and HSP70 gene transcripts were measured in the left ventricle of the heart by means of Western immunoblotting and semiquantitative RT-PCR, respectively. The resultant acclimatory change comprised a higher resting level of the encoded 72-kDa protein (Δ175%, P < 0.0001). After HS, peak HSP72 mRNA level was attained, 40 and 20 min post-HS at 41 and 43°C, respectively, vs. 60 and 40 min in the nonacclimated group. The subsequent HSP synthesis, however, was dependent on the severity of the cumulative heat strain. At the initial phase of heat acclimation, augmented HSP72 transcription unaccompanied by HSP synthesis was observed. It is concluded that upon heat acclimation, the HSP defense pathway is predisposed to a faster response. At the initial phases of heat acclimation, inability to elevate the HSP cytosolic level rules out their direct cytoprotective role.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2785
Author(s):  
Hoa Quynh Nguyen ◽  
Yuseob Kim ◽  
Yikweon Jang

In metropolitan Seoul, populations of the cicada Hyalessa fuscata in hotter urban heat islands (“high UHIs”) exhibit higher thermal tolerance than those in cooler UHIs (“low UHIs”). We hypothesized that heat stress may activate the expression of genes that facilitate greater thermal tolerance in high-UHI cicadas than in those from cooler areas. Differences in the transcriptomes of adult female cicadas from high-UHI, low-UHI, and suburban areas were analyzed at the unheated level, after acute heat stress, and after heat torpor. No noticeable differences in unheated gene expression patterns were observed. After 10 min of acute heat stress, however, low-UHI and suburban cicadas expressed more heat shock protein genes than high-UHI counterparts. More specifically, remarkable changes in the gene expression of cicadas across areas were observed after heat torpor stimulus, as represented by a large number of up- and downregulated genes in the heat torpor groups compared with the 10 min acute heat stress and control groups. High-UHI cicadas expressed the most differentially expressed genes, followed by the low-UHI and suburban cicadas. There was a notable increase in the expression of heat shock, metabolism, and detoxification genes; meanwhile, immune-related, signal transduction, and protein turnover genes were downregulated in high-UHI cicadas versus the other cicada groups. These results suggested that under heat stress, cicadas inhabiting high-UHIs could rapidly express genes related to heat shock, energy metabolism, and detoxification to protect cells from stress-induced damage and to increase their thermal tolerance toward heat stress. The downregulation of apoptosis mechanisms in high-UHI cicadas suggested that there was less cellular damage, which likely contributed to their high tolerance of heat stress.


2021 ◽  
Author(s):  
Yunyu Wu ◽  
Ning Xiao ◽  
Yuhong Li ◽  
Qiang Gao ◽  
Yuese Ning ◽  
...  

Abstract Rice blast is one of the most widespread and devastating diseases in rice production. Tremendous success has been achieved in identification and characterization of genes and quantitative trait loci (QTLs) conferring seedling blast resistance, however, genetic studies on panicle blast resistance have lagged far behind. In this study, two advanced backcross inbred sister lines (MSJ13 and MSJ18) were obtained in the process of introducing Pigm into C134S, and showed significant differences in the panicle blast resistance. One F2 population derived from the crossing MSJ13/MSJ18 was used to QTL mapping for panicle blast resistance using Genotyping by Sequencing (GBS) method. A total of 7 QTLs were identified, including a major QTL qPBR10-1 on chromosome 10 that explaining 24.21% of phenotypic variance with LOD scores of 6.62. Furthermore, qPBR10-1 was verified via the BC1F2 and BC1F3 population and narrowed to a 60.6-kb region with six candidate genes predicted, including two genes encoding exonuclease family protein, two genes encoding hypothetical protein, and two genes encoding transposon protein. The nucleotide variations and the expression patterns of the candidate genes were identified and analyzed between MSJ13 and MSJ18 through sequence comparison and RT-PCR approach, and results indicated that ORF1 and ORF2 encoding exonuclease family protein might be the causal candidate genes for panicle blast resistance in the qPBR10-1 locus.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 312
Author(s):  
Yeeun Kang ◽  
Suk-Woo Jang ◽  
Hee Ju Lee ◽  
Derek W. Barchenger ◽  
Seonghoe Jang

High temperatures due to global warming can cause harmful effects on the productivity of lettuce, a cool-season crop. To identify lettuce heat shock protein (HSP) genes that could be involved in early responses to heat stress in plants, we compared RNA transcriptomes between lettuce plants with and without heat treatment of 37 °C for 1 h. Using transcriptome sequencing analyses, a total of 7986 differentially expressed genes (DEGs) were identified including the top five, LsHSP70A, LsHSP70B, LsHSP17.3A, LsHSP17.9A and LsHSP17.9B, which were the most highly differentially expressed genes. In order to investigate the temporal expression patterns of 24 lettuce HSP genes with a fold-change greater than 100 under heat stress, the expression levels of the genes were measured by qRT-PCR at 0, 1, 4, 8, 14, and 24 h time points after heat treatment. The 24 LsHSP genes were classified into three groups based on the phylogenetic analysis and/or major domains available in each protein, and we provided a potential link between the phylogenetic relationships and expression patterns of the LsHSP genes. Our results showed putative early heat-responsive lettuce HSP genes that could be possible candidates as breeding guides for the development of heat-tolerant lettuce cultivars.


Botany ◽  
2017 ◽  
Vol 95 (1) ◽  
pp. 9-27 ◽  
Author(s):  
Gillian Halter ◽  
Nicole Simonetti ◽  
Cristy Suguitan ◽  
Kenneth Helm ◽  
Jessica Soroksky ◽  
...  

Thermotolerance is a property of all organisms, but owing to their sessile nature, this trait is particularly important in plants. Basal thermotolerance is based on inherent tolerance to heat stress. Acquired thermotolerance is attained through stress-induced gene expression, often of those genes encoding heat shock proteins (HSPs). Both basal and acquired thermotolerance have been extensively studied in model species such as Arabidopsis thaliana (L.) Heynh., but much less is known about thermotolerance in wild plant species. The aims of this study were to examine the basal and acquired thermotolerance of four species of Boechera, and of A. thaliana. Four species of Boechera native to California were collected and used for this study: B. arcuata (Nutt.) Windham & Al-Shehbaz, B. californica (Rollins) Windham & Al-Shehbaz, B. depauperata (A.Nelson & P.B.Kenn.) Windham & Al-Shehbaz, and B. perennans (S.Watson) W.A.Weber. Seedlings were exposed to both basal and acquired heat stress and then monitored for leaf damage, chlorophyll fluorescence, and gene expression of HsfA3, Hsp101, and four sHSP genes. Analysis of organismal responses to heat stress demonstrated that all four Boechera species are more thermotolerant than A. thaliana. Further we found that he species with the highest thermotolerance is B. depauperata.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 323 ◽  
Author(s):  
Imene Toumi ◽  
Marianthi G. Pagoulatou ◽  
Theoni Margaritopoulou ◽  
Dimitra Milioni ◽  
Kalliopi A. Roubelakis-Angelakis

The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.


2009 ◽  
Vol 166 (15) ◽  
pp. 1646-1659 ◽  
Author(s):  
Ramesha A. Reddy ◽  
Bhumesh Kumar ◽  
Palakolanu Sudhakar Reddy ◽  
Rabi N. Mishra ◽  
Srikrishna Mahanty ◽  
...  

2021 ◽  
Author(s):  
Hao Zhang ◽  
Changhua Jiang ◽  
Rui Wang ◽  
Long Zhang ◽  
Ruonan Gai ◽  
...  

Abstract Clematis species are commonly grown in western and Japanese gardens. Heat stress can inhibit many physiological processes mediating plant growth and development. The mechanism regulating responses to heat has been well characterized in Arabidopsis thaliana and some crops, but not in horticultural plants, including Clematis species. In this study, we found that Clematis alpina ‘Stolwijk Gold’ was heat-sensitive whereas Clematis vitalba and Clematis viticella ‘Polish Spirit’ were heat-tolerant based on the physiological analyses in heat stress. Transcriptomic profiling identified a set of heat tolerance-related genes (HTGs). Consistent with the observed phenotype in heat stress, 41.43% of the differentially expressed HTGs between heat treatment and control were down-regulated in heat-sensitive cultivar Stolwijk Gold, but only 9.80% and 20.79% of the differentially expressed HTGs in heat resistant C. vitalba and Polish Spirit, respectively. Co-expression network, protein–protein interaction network and phylogenetic analysis revealed that the genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs) played an essential role in Clematis resistance to heat stress. Ultimately, we proposed that two clades of HSFs may have diverse functions in regulating heat resistance from C. vitalba and CvHSFA2-2 could endow different host with high temperature resistance. This study provides first insights into the diversity of the heat response mechanisms among Clematis species.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8306 ◽  
Author(s):  
Yan Wang ◽  
Yang Yu ◽  
Min Huang ◽  
Peng Gao ◽  
Hao Chen ◽  
...  

Heat stress is an increasing threat to rice production worldwide. To investigate the mechanisms of heat tolerance in hybrid rice and their contributions to rice heterosis, we compared the transcriptome of the hybrid rice II YOU 838 (II8) with the transcriptomes of its parents Fu Hui 838 (F8) and II-32A (II3) after heat stress at 42 °C for 0 h, 24 h, 72 h and 120 h. We also performed a proteomic analysis in II8 after heat stress at 42 °C for 24 h. The transcriptome data revealed time-dependent gene expression patterns under the heat stress conditions, and the heat stress response of II8 was greatly different from those of its parents. Gene ontology analysis of the differentially expressed genes that were clustered using k-means clustering showed that most of the up-regulated genes were involved in responses to stimuli, cell communication, and metabolic and transcription factor activities, whereas the down-regulated genes were enriched in photosynthesis and signal transduction. Moreover, 35 unique differentially abundant proteins, including a basic helix-loop-helix transcription factor (bHLH96), calmodulin-binding transcription activator, heat shock protein (Hsp70), and chaperonin 60 (CPN60), were detected in the proteomic analysis of II8 under heat stress. The co-regulatory analysis revealed novel genes and pathways involved in heat tolerance, namely, ferredoxin-NADP reductase, peroxidases, mitogen-activated protein kinase kinase kinase, and heat shock factor (HSF)–Hsp network. Members of the Hsp and HSF families had over-dominant expression patterns in the hybrid compared with its parents, to help maintain the higher photosynthesis and antioxidant defense systems in the hybrid. Our study suggests that the complex HSF–Hsp regulatory network contribute to the heat tolerance of the hybrid rice.


Sign in / Sign up

Export Citation Format

Share Document