scholarly journals Genotyping crossing parents and family bulks can facilitate cost-efficient genomic prediction strategies in small-scale line breeding programs

Author(s):  
Sebastian Michel ◽  
Franziska Löschenberger ◽  
Christian Ametz ◽  
Hermann Bürstmayr

Abstract Key message Genomic relationship matrices based on mid-parent and family bulk genotypes represent cost-efficient alternatives to full genomic prediction approaches with individually genotyped early generation selection candidates. Abstract The routine usage of genomic selection for improving line varieties has gained an increasing popularity in recent years. Harnessing the benefits of this approach can, however, be too costly for many small-scale breeding programs, as in most genomic breeding strategies several hundred or even thousands of lines have to be genotyped each year. The aim of this study was thus to compare a full genomic prediction strategy using individually genotyped selection candidates with genomic predictions based on genotypes obtained from pooled DNA of progeny families as well as genotypes inferred from crossing parents. A population of 722 wheat lines representing 63 families tested in more than 100 multi-environment trials during 2010–2019 was for this purpose employed to conduct an empirical study, which was supplemented by a simulation with genotypic data from further 3855 lines. A similar or higher prediction ability was achieved for grain yield, protein yield, and the protein content when using mid-parent or family bulk genotypes in comparison with pedigree selection in the empirical across family prediction scenario. The difference of these methods with a full genomic prediction strategy became furthermore marginal if pre-existing phenotypic data of the selection candidates was already available. Similar observations were made in the simulation, where the usage of individually genotyped lines or family bulks was generally preferable with smaller family sizes. The proposed methods can thus be regarded as alternatives to full genomic or pedigree selection strategies, especially when pedigree information is limited like in the exchange of germplasm between breeding programs.


Author(s):  
Anna R Rogers ◽  
James B Holland

Abstract Technology advances have made possible the collection of a wealth of genomic, environmental, and phenotypic data for use in plant breeding. Incorporation of environmental data into environment-specific genomic prediction (GP) is hindered in part because of inherently high data dimensionality. Computationally efficient approaches to combining genomic and environmental information may facilitate extension of GP models to new environments and germplasm, and better understanding of genotype-by-environment (G × E) interactions. Using genomic, yield trial, and environmental data on 1,918 unique hybrids evaluated in 59 environments from the maize Genomes to Fields project, we determined that a set of 10,153 SNP dominance coefficients and a 5-day temporal window size for summarizing environmental variables were optimal for GP using only genetic and environmental main effects. Adding marker-by-environment variable interactions required dimension reduction, and we found that reducing dimensionality of the genetic data while keeping the full set of environmental covariates was best for environment-specific GP of grain yield, leading to an increase in prediction ability of 2.7% to achieve a prediction ability of 80% across environments when data were masked at random. We then measured how prediction ability within environments was affected under stratified training-testing sets to approximate scenarios commonly encountered by plant breeders, finding that incorporation of marker-by-environment effects improved prediction ability in cases where training and test sets shared environments, but did not improve prediction in new untested environments. The environmental similarity between training and testing sets had a greater impact on the efficacy of prediction than genetic similarity between training and test sets.



2021 ◽  
Vol 245 ◽  
pp. 104421
Author(s):  
Rosiane P. Silva ◽  
Rafael Espigolan ◽  
Mariana P. Berton ◽  
Raysildo B. Lôbo ◽  
Cláudio U. Magnabosco ◽  
...  


Author(s):  
Mohammad Istiak Hossain ◽  
Jan I. Markendahl

AbstractSmall-scale commercial rollouts of Cellular-IoT (C-IoT) networks have started globally since last year. However, among the plethora of low power wide area network (LPWAN) technologies, the cost-effectiveness of C-IoT is not certain for IoT service providers, small and greenfield operators. Today, there is no known public framework for the feasibility analysis of IoT communication technologies. Hence, this paper first presents a generic framework to assess the cost structure of cellular and non-cellular LPWAN technologies. Then, we applied the framework in eight deployment scenarios to analyze the prospect of LPWAN technologies like Sigfox, LoRaWAN, NB-IoT, LTE-M, and EC-GSM. We consider the inter-technology interference impact on LoRaWAN and Sigfox scalability. Our results validate that a large rollout with a single technology is not cost-efficient. Also, our analysis suggests the rollout possibility of an IoT communication Technology may not be linear to cost-efficiency.



Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 502 ◽  
Author(s):  
Jong-Hyun Kim ◽  
Wook Kim ◽  
Young Kim ◽  
Jung Lee

When we perform particle-based water simulation, water particles are often increased dramatically because of particle splitting around breaking holes to maintain the thin fluid sheets. Because most of the existing approaches do not consider the volume of the water particles, the water particles must have a very low mass to satisfy the law of the conservation of mass. This phenomenon smears the motion of the water, which would otherwise result in splashing, thereby resulting in artifacts such as numerical dissipation. Thus, we propose a new fluid-implicit, particle-based framework for maintaining and representing the thin sheets and turbulent flows of water. After splitting the water particles, the proposed method uses the ghost density and ghost mass to redistribute the difference in mass based on the volume of the water particles. Next, small-scale turbulent flows are formed in local regions and transferred in a smooth manner to the global flow field. Our results show us the turbulence details as well as the thin sheets of water, thereby obtaining an aesthetically pleasing improvement compared with existing methods.



2020 ◽  
Vol 6 (1) ◽  
pp. 1-25
Author(s):  
Wadii Snaibi

AbstractThe high plateaus of eastern Morocco are already suffering from the adverse impacts of climate change (CC), as the local populations’ livelihoods depend mainly on extensive sheep farming and therefore on natural resources. This research identifies breeders’ perceptions about CC, examines whether they correspond to the recorded climate data and analyses endogenous adaptation practices taking into account the agroecological characteristics of the studied sites and the difference between breeders’ categories based on the size of owned sheep herd. Data on perceptions and adaptation were analyzed using the Chi-square independence and Kruskal-Wallis tests. Climate data were investigated through Mann-Kendall, Pettitt and Buishand tests.Herders’ perceptions are in line with the climate analysis in term of nature and direction of observed climate variations (downward trend in rainfall and upward in temperature). In addition, there is a significant difference in the adoption frequency of adaptive strategies between the studied agroecological sub-zones (χ2 = 14.525, p <.05) due to their contrasting biophysical and socioeconomic conditions, as well as among breeders’ categories (χ2 = 10.568, p < .05) which attributed mainly to the size of sheep flock. Policy options aimed to enhance local-level adaptation should formulate site-specific adaptation programs and prioritise the small-scale herders.



2021 ◽  
Author(s):  
Mahyar Pourghasemi ◽  
Nima Fathi

Abstract 3-D numerical simulations are performed to investigate liquid sodium (Na) flow and the heat transfer within miniature heat sinks with different geometries and hydraulic diameters of less than 5 mm. Two different straight small-scale heat sinks with rectangular and triangular cross-sections are studied in the laminar flow with the Reynolds number up to 1900. The local and average Nusselt numbers are obtained and compared against eachother. At the same surface area to volume ratio, rectangular minichannel heat sink leads to almost 280% higher convective heat transfer rate in comparison with triangular heat sink. It is observed that the difference between thermal efficiencies of rectangular and triangular minichannel heat sinks was independent of flow Reynolds number.



PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0201181
Author(s):  
Boby Mathew ◽  
Jens Léon ◽  
Mikko J. Sillanpää


1996 ◽  
Vol 10 (1) ◽  
pp. 169-173 ◽  
Author(s):  
Michael R. Blumhorst

Characterization of pesticide degradation in soil is an important component in determining the environmental impact of agriculturally-applied pesticides. Several techniques currently are being used to generate these data, but small-scale laboratory studies remain one of the most effective, cost-efficient mechanisms of evaluating pesticide behavior in soil. With small-scale studies, many different environmental factors can be incorporated into the experimental design, and with the use of14C-labeled material, these studies (often referred to as soil degradation or soil metabolism studies) provide information on test substance persistence, degradation, volatilization, and mineralization. Care must be exercised, however, in selecting the experimental parameters to be used because of the potential adverse or artificial effects on the soil system.



2020 ◽  
Vol 33 (4) ◽  
pp. 525-530 ◽  
Author(s):  
Byoungho Park ◽  
Tae Jeong Choi ◽  
Mi Na Park ◽  
Sang-Hyon Oh

Objective: The purpose of this study was i) to identify the characteristics of carcass traits in Chikso by gender, region, age at slaughter, and coat color using the carcass data collected from the nationwide pedigree information and coat color investigation, and ii) to estimate genetic parameters for breed improvement.Methods: A linear model was used to analyze the environmental effects on the carcass traits and to estimate genetic parameters. Analysis of variance was performed using TYPE III sum of squares for the unbalanced data provided by the general linear model procedure. Variance components for genetic parameters was estimated using REMLF90 of the BLUPF90 family programs.Results: Phenotypic performance of carcass weight (CW), eye muscle area (EMA), and backfat thickness (BF) in Chikso were lower than those of Hanwoo. This is a natural outcome because Hanwoo have undergone significant efforts for improvement at the national level, a phenomenon not observed in Chikso. Another factor influencing the above outcome was the smaller population size of Chikso compared to that of Hanwoo’s. The heritabilities of CW, EMA, BF, and marbling score in Chikso were estimated as 0.50, 0.37, 0.35, and 0.53, respectively, which were was higher than those of Hanwoo.Conclusion: Based on the genetic parameters that were estimated in this study, it is expected that the carcass traits will improve when the livestock research institutes at each province conduct small-scale performance tests and the semen is provided to farmers after selecting proven bulls using the state-of-art selection technique such as genomic selection.



Author(s):  
T. Tachi ◽  
Y. Wang ◽  
R. Abe ◽  
T. Kato ◽  
N. Maebashi ◽  
...  

Abstract. Mobile mapping technology is an effective method to collect geospatial data with high point density and accuracy. It is mainly used for asset inventory and map generation, as well as road maintenance (detecting road cracks and ruts, and measuring flatness). Equipment of former mobile mapping systems (MMS) is large in size and usually installed (hard-mounted) onto dedicated vehicle. Cost-effectiveness and flexibility of MMS have not been regarded as important until Leica Pegasus series, a much smaller system with integrated and configurable components, come out. In this paper, we show you how we realize a versatile MMS with a Pegasus II loaded on a remodelled Japanese light vehicle (small size and less than a cubic capacity of 660 cc). Besides Pegasus II and data-processing PC, we equip this system with a small crane to bring the sensor onto a different platform, an electric cart to survey narrow roads or pedestrian walkway, and a boat attachment so that the sensor can be fixed on a boat. Thus, one Pegasus II can collect data from various platforms. This paper also discusses the precision and accuracy of the Pegasus II working on various platforms. When mounted on a light vehicle, we verified the accuracy of the difference with GCP and evaluated the accuracy of the road maintenance (detecting road cracks and ruts, and measuring flatness). When mounted on an electric cart, we verified the accuracy of the difference with GCP on a pedestrian road and generated road hazard map as a data utilization. When mounted on a boat, we verified the accuracy of the difference with GCP on a dam slope and created slope shading map of landslide area as a data utilization. It turns out that Pegasus II can totally achieve to required surveying-grade.



Sign in / Sign up

Export Citation Format

Share Document