scholarly journals Structural and functional polarisation of human pancreatic beta cells in islets from organ donors with and without type 2 diabetes

Diabetologia ◽  
2021 ◽  
Author(s):  
Louise Cottle ◽  
Wan Jun Gan ◽  
Ian Gilroy ◽  
Jaswinder S. Samra ◽  
Anthony J. Gill ◽  
...  

Abstract Aims/hypothesis We hypothesised that human beta cells are structurally and functional polarised with respect to the islet capillaries. We set out to test this using confocal microscopy to map the 3D spatial arrangement of key proteins and live-cell imaging to determine the distribution of insulin granule fusion around the cells. Methods Human pancreas samples were rapidly fixed and processed using the pancreatic slice technique, which maintains islet structure and architecture. Slices were stained using immunofluorescence for polarity markers (scribble, discs large [Dlg] and partitioning defective 3 homologue [Par3]) and presynaptic markers (liprin, Rab3-interacting protein [RIM2] and piccolo) and imaged using 3D confocal microscopy. Isolated human islets were dispersed and cultured on laminin-511-coated coverslips. Live 3D two-photon microscopy was used on cultured cells to image exocytic granule fusion events upon glucose stimulation. Results Assessment of the distribution of endocrine cells across human islets found that, despite distinct islet-to-islet complexity and variability, including multi-lobular islets, and intermixing of alpha and beta cells, there is still a striking enrichment of alpha cells at the islet mantle. Measures of cell position demonstrate that most beta cells contact islet capillaries. Subcellularly, beta cells consistently position polar determinants, such as Par3, Dlg and scribble, with a basal domain towards the capillaries and apical domain at the opposite face. The capillary interface/vascular face is enriched in presynaptic scaffold proteins, such as liprin, RIM2 and piccolo. Interestingly, enrichment of presynaptic scaffold proteins also occurs where the beta cells contact peri-islet capillaries, suggesting functional interactions. We also observed the same polarisation of synaptic scaffold proteins in islets from type 2 diabetic patients. Consistent with polarised function, isolated beta cells cultured onto laminin-coated coverslips target insulin granule fusion to the coverslip. Conclusions/interpretation Structural and functional polarisation is a defining feature of human pancreatic beta cells and plays an important role in the control of insulin secretion. Graphical abstract

Diabetologia ◽  
2005 ◽  
Vol 48 (2) ◽  
pp. 282-289 ◽  
Author(s):  
M. Anello ◽  
R. Lupi ◽  
D. Spampinato ◽  
S. Piro ◽  
M. Masini ◽  
...  

2020 ◽  
Vol 68 (10) ◽  
pp. 691-702
Author(s):  
Gladys Teitelman

In pancreatic beta cells, proinsulin (ProIN) undergoes folding in endoplasmic reticulum/Golgi system and is translocated to secretory vesicles for processing into insulin and C-peptide by the proprotein convertases (PC)1/3 and PC2, and carboxypeptidase E. Human beta cells show significant variation in the level of expression of PC1/3, the critical proconvertase involved in proinsulin processing. To ascertain whether this heterogeneity is correlated with the level of expression of the prohormone and mature hormone, the expression of proinsulin, insulin, and PC1/3 in human beta cells was examined. This analysis identified a human beta cell type that expressed proinsulin but lacked PC1/3 (ProIN+PC1/3−). This beta cell type is absent in rodent islets and is abundant in human islets of adults but scarce in islets from postnatal donors. Human islets also contained a beta cell type that expressed both proinsulin and variable levels of PC1/3 (ProIN+PC1/3+) and a less abundant cell type that lacked proinsulin but expressed the convertase (ProIN−PC1/3+). These cell phenotypes were altered by type 2 diabetes. These data suggest that these three cell types represent different stages of a dynamic process with proinsulin folding in ProIN+PC1/3− cells, proinsulin conversion into insulin in ProIN+PC1/3+cells, and replenishment of the proinsulin content in ProIN−PC1/3+ cells:


Diabetes ◽  
1999 ◽  
Vol 48 (4) ◽  
pp. 927-932 ◽  
Author(s):  
Y. Ihara ◽  
S. Toyokuni ◽  
K. Uchida ◽  
H. Odaka ◽  
T. Tanaka ◽  
...  

2001 ◽  
Vol 27 (2) ◽  
pp. 133-144 ◽  
Author(s):  
R Perfetti ◽  
H Hui ◽  
K Chamie ◽  
S Binder ◽  
M Seibert ◽  
...  

The Arg64 beta(3)-adrenergic receptor (beta(3)AR) variant is associated with an earlier age of onset of diabetes and lower levels of insulin secretion in humans. The aims of this study were to investigate whether beta(3)AR is expressed by islet cells, if receptor binding affects insulin secretion and, finally, if the beta(3)AR Arg64 variant induces abnormal insulin secretory activity. Human pancreas extracts were subjected to RT-PCR, Western blotting and immunostaining analyses. DNA sequencing and Western blotting demonstrated that the beta(3)AR gene is transcribed and translated in the human pancreas; immunostaining showed that it is expressed by the islets of Langerhans. Cultured rat beta-cells responded to human beta(3)AR agonists in a dose- and time-dependent manner. Transfection of cultured rat beta-cells with the wild-type human beta(3)AR produced an increased baseline and ligand-dependent insulin secretion compared with parental cells. On the other hand, cells transfected with the Arg64 variant of the beta(3)AR secreted less insulin, both spontaneously and after exposure to human beta(3)AR agonists. Furthermore, while transfection with the wild-type beta(3)AR preserved the glucose-dependent secretion of insulin, expression of the variant receptor rendered the host cells significantly less responsive to glucose. In summary, cells express the beta(3)AR, and its activation contributes to the regulation of insulin secretion. These findings may help explain the low levels of insulin secretion in response to an i.v. glucose tolerance test observed in humans carrying the Arg64 polymorphism.


2015 ◽  
Vol 309 (7) ◽  
pp. E640-E650 ◽  
Author(s):  
Jean-Claude Henquin ◽  
Denis Dufrane ◽  
Julie Kerr-Conte ◽  
Myriam Nenquin

The biphasic pattern of glucose-induced insulin secretion is altered in type 2 diabetes. Impairment of the first phase is an early sign of β-cell dysfunction, but the underlying mechanisms are still unknown. Their identification through in vitro comparisons of islets from diabetic and control subjects requires characterization and quantification of the dynamics of insulin secretion by normal islets. When perifused normal human islets were stimulated with 15 mmol/l glucose (G15), the proinsulin/insulin ratio in secretory products rapidly and reversibly decreased (∼50%) and did not reaugment with time. Switching from prestimulatory G3 to G6–G30 induced biphasic insulin secretion with flat but sustained (2 h) second phases. Stimulation index reached 6.7- and 3.6-fold for the first and second phases induced by G10. Concentration dependency was similar for both phases, with half-maximal and maximal responses at G6.5 and G15, respectively. First-phase response to G15–G30 was diminished by short (30–60 min) prestimulation in G6 (vs. G3) and abolished by prestimulation in G8, whereas the second phase was unaffected. After 1–2 days of culture in G8 (instead of G5), islets were virtually unresponsive to G15. In both settings, a brief return to G3–G5 or transient omission of CaCl2 restored biphasic insulin secretion. Strikingly, tolbutamide and arginine evoked immediate insulin secretion in islets refractory to glucose. In conclusion, we quantitatively characterized the dynamics of glucose-induced insulin secretion in normal human islets and showed that slight elevation of prestimulatory glucose reversibly impairs the first phase, which supports the view that the similar impairment in type 2 diabetic patients might partially be a secondary phenomenon.


2020 ◽  
Vol 11 (10) ◽  
pp. 23-25
Author(s):  
Nandakumar Ravichandran

Diabetes is a chronic condition that causes several diseases. Type 1 and Type 2 dependent diabetes are shown more concern in today’s world. Type1 dependent patients suffers from inability of the Beta cells to produce insulin whereas Type 2 dependent patients suffers from insufficient insulin production. Diabetic Retinopathy, Nephropathy, Critical Limb Ischemia and impaired glucose tolerance are some of the major risk factors of Diabetes. Diabetic Retinopathy is a major complication of Diabetes causing blindness in working age adults. This article discusses some research methods involved in the generation of Beta cells carried out by certain authors, hypothesis and future works in this field.


2015 ◽  
Vol 3 (1) ◽  
pp. 45-50
Author(s):  
Franziska Thimm ◽  
Marten Szibor

Diabetes mellitus is rapidly becoming the world’s most dangerous serial killer. Type 1 diabetes (T1D) is a currently incurable autoimmune disease marked by progressive, and eventually exhaustive, destruction of the insulin-producing pancreatic beta cells. Type 2 diabetes (T2D) describes the combination of insulin resistance in peripheral tissue, insufficient insulin secretion from the pancreatic beta cells, and excessive glucagon secretion from the pancreatic alpha cells. T1D as well as severe cases of T2D are treated with insulin replacement, which can merely be considered as life support for the acute phases of the disease. Islet replacement of insulin-producing pancreatic beta cells represents a potential treatment method for both insulin-depleted diabetes (T1D) and insulin-resistant diabetes (T2D) and may shift diabetes management from life saving measures to a cure. One of the key challenges in islet transplants is the generation of reactive oxygen species (ROS) and the associated oxidative stress, which restricts graft longevity. A major leak of ROS takes place during oxidative phosphorylation at mitochondrial electron transport chain (ETC). Additionally, hyperglycemia-induced superoxide (O2•-) production has been linked to the development and progression of diabetic complications, both macrovascular and microvascular. Decreasing ROS in diabetic patients may prevent the incidence of long term diabetes complications. This review provides an overview of the role of mitochondria in diabetes, introducing them as a possible target for future treatment of diabetes.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 168 ◽  
Author(s):  
Anne-Françoise Close ◽  
Nidheesh Dadheech ◽  
Hélène Lemieux ◽  
Qian Wang ◽  
Jean Buteau

Nor1, the third member of the Nr4a subfamily of nuclear receptor, is garnering increased interest in view of its role in the regulation of glucose homeostasis. Our previous study highlighted a proapoptotic role of Nor1 in pancreatic beta cells and showed that Nor1 expression was increased in islets isolated from type 2 diabetic individuals, suggesting that Nor1 could mediate the deterioration of islet function in type 2 diabetes. However, the mechanism remains incompletely understood. We herein investigated the subcellular localization of Nor1 in INS832/13 cells and dispersed human beta cells. We also examined the consequences of Nor1 overexpression on mitochondrial function and morphology. Our results show that, surprisingly, Nor1 is mostly cytoplasmic in beta cells and undergoes mitochondrial translocation upon activation by proinflammatory cytokines. Mitochondrial localization of Nor1 reduced glucose oxidation, lowered ATP production rates, and inhibited glucose-stimulated insulin secretion. Western blot and microscopy images revealed that Nor1 could provoke mitochondrial fragmentation via mitophagy. Our study unveils a new mode of action for Nor1, which affects beta-cell viability and function by disrupting mitochondrial networks.


Sign in / Sign up

Export Citation Format

Share Document