Effect of initial temperature on joint of aluminum alloy to galvanized steel welded by MIG arc brazing-fusion welding process

2016 ◽  
Vol 86 (9-12) ◽  
pp. 3135-3143 ◽  
Author(s):  
Hong Ma ◽  
Guoliang Qin ◽  
Xiaoyang Bai ◽  
Liyuan Wang ◽  
Zhida Liang
2016 ◽  
Vol 835 ◽  
pp. 191-196 ◽  
Author(s):  
Kookil No ◽  
Ye Rim Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Ho Sung Lee

Friction stir welding is a widely used welding process for aluminum alloys because it avoids many of the problems of conventional fusion welding. This process is beneficial especially for lithium containing aluminum alloys in which the reactive property of element Li causes porosity and hot cracking during melting and solidification. In friction stir welding process, each region undergoes different thermo-mechanical cycles and produces a non-homogeneous microstructure. In the present study, the mechanical properties and microstructure of a 2195-T8 aluminum alloy joined with friction stir welding were investigated. The change in microstructure across the welded joint was found to correspond to microhardness measurement. The microstructure was characterized by the presence of severely deformed grains and fine recrystallized grains depending on the region. Tensile tests shows the optimum condition was obtained at the tool rotating speed of 600rpm and the traveling speed range from 180 to 300mm/min.


2021 ◽  
Vol 25 (Special) ◽  
pp. 2-124-2-134
Author(s):  
Omer T. Abbas ◽  
◽  
Abbas A. Ayoub ◽  
Fouad A. Saleh ◽  
◽  
...  

Friction stir welding (FSW) process is a solid-state joining invented via the Welding Institute in 1991 at a great rate emerging as an application by fusion welding for joining different alloys. The wrought aluminum alloy 6061 is heat treatable and possesses a high corrosion resistance. This alloy has been used in a wide range of applications, like arenas gymnasiums and trains bodies. Aluminum alloy 6061 cannot be easily welded by the conventional fusion welding process because of the cracks that make the mechanical of welding joint very weak. In FSW, many parameters effect on its welding process. In the present research, the pre-heating effect on the aluminum 6061 sheet at 100°C and 150°C was studied. This heat has to be given for obtaining a defect-free as well as quality joint. Result manifested that the welding without pre-heating the parent metal at a (1120 r.p.m) rotational speed and a (30 mm/min) welding speed gave the best result of the ultimate tensile strength (236 N/mm2).


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 543
Author(s):  
Nkopane Angelina Ramaphoko ◽  
Samuel Skhosane ◽  
Nthabiseng Maledi

This paper presents the laser beam welding process of a lap joint between galvanized steel (Z225) and an aluminum alloy (A6000) from an IPG fiber laser. Welding of steel to aluminum has become popular in the automotive industry as a means of reducing the total vehicle body mass. This approach reduces fuel consumption and, ultimately, carbon emissions. Laser welding parameters used to control heat input for the study were laser power ranging between 800 and 1200 W, as well as laser welding speeds between 2 and 4 m/min. Distinct features of the dissimilar joints were microscopically examined. The SEM-EDS technique was employed to study the intermetallic phases along the Fe-Al interface. The outcome revealed the presence of “needle-like phases” and “island-shaped phases” at high heat inputs. Traces of both Fe2Al5 and FeAl3 phases were detected. For low heat input, there was evidence of insufficient fusion. Weld width was influenced by welding parameters and increased with an increase in heat input. Mechanical properties of the joints indicated that the microhardness values of the weld joints were higher than those of both base metals. The maximum tensile shear strength obtained was 1.79 kN for a sample produced at 1200 W and 3 m/min.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1674
Author(s):  
Fangzhou Yang ◽  
Bing Liu

A novel ultrasonic vibration-assisted welding (UVAW) process was used to achieve reliable joining of galvanized steel and Mg alloy. The effects of the UVAW technique on the microstructure and mechanical properties of galvanized steel/Mg alloy weldment were studied in detail. The introduction of ultrasonic vibration can ameliorate the wetting of welds and eliminate porosity defects. A refined microstructure of the fusion welding zone with an average grain size of 39 ± 1.7 µm was obtained and attributed to cavitation and acoustic streaming caused by the UVAW process. The grain refinement led to an increase in the microhardness and joining strength of the galvanized steel/Mg alloy weldment. Under the ultrasonic power of 0.9 kW and a current of 65 A, the maximum joining strength of the ultrasound-treated galvanized steel/Mg alloy joint was 251 ± 4.1 MPa, which was a 14.6% increase over the joint without ultrasonic treatment.


2014 ◽  
Vol 214 (11) ◽  
pp. 2684-2692 ◽  
Author(s):  
Guoliang Qin ◽  
Zhen Lei ◽  
Yuhu Su ◽  
Banglong Fu ◽  
Xiangmeng Meng ◽  
...  

2017 ◽  
Vol 37 (1) ◽  
pp. 6-21 ◽  
Author(s):  
C. Rajendrana ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractAA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.


2020 ◽  
Vol 65 (2) ◽  
pp. 53-64
Author(s):  
Michael Regev ◽  
Stefano Spigarelli

The poor weldability of AA2024 aluminum alloy limits its use for industrial applications. Being a non-fusion welding process, Friction Stir Welding (FSW) seems to be a promising solution for welding this alloy. FSW was applied in the current study in order to butt weld AA2024-T3 aluminum alloy plates and to study the creep behavior of the weld. Creep tests were conducted at 250 0C and 315 0C both on the parent material and on the friction stir welded specimens. A comprehensive Transmission Electron Microscopy (TEM) study together with High Resolution Scanning Electron Microscopy (HRSEM) study and Energy Dispersive X-ray Spectroscopy (EDS) analysis were conducted in order to investigate the microstructural processes. The parent material seems to contain two kinds of Curich precipitates - coarse precipitates having the size of a few microns each and uniformly dispersed fine nanosized precipitates. However, this microstructure was found to be unstable at the temperature range of 250-315 0C, secondary precipitation was found to take place, this secondary precipitation is responsible for grain boundary decoration and the appearance of secondary rod-shaped precipitates and for some degree of coarsening of the nanosized precipitates inside the grains. TEM study yielded that the material undergoes dynamic recrystallization (DRX) during creep as well as during the FSW process. Various stages of the development of dislocation networks into a cellular dislocation structure and finally into dislocation free recrystallized grains were recorded. The friction stir welded material, which has already recrystallized during welding, undergoes DRX during creep so that ultra-fine grains are being created concurrently. Precipitation processes at the friction stir welded material occur as well during creep. The instability of the microstructure during creep and exposure to high temperature plays an important role in the analysis of the creep results. The influence of the above microstructure changes occurring during creep on the creep behavior will be referred and discussed.


Sign in / Sign up

Export Citation Format

Share Document