Tensile Properties and Microstructure of Friction Stir Welded Joints 2195-T8 Aluminum Alloy

2016 ◽  
Vol 835 ◽  
pp. 191-196 ◽  
Author(s):  
Kookil No ◽  
Ye Rim Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Ho Sung Lee

Friction stir welding is a widely used welding process for aluminum alloys because it avoids many of the problems of conventional fusion welding. This process is beneficial especially for lithium containing aluminum alloys in which the reactive property of element Li causes porosity and hot cracking during melting and solidification. In friction stir welding process, each region undergoes different thermo-mechanical cycles and produces a non-homogeneous microstructure. In the present study, the mechanical properties and microstructure of a 2195-T8 aluminum alloy joined with friction stir welding were investigated. The change in microstructure across the welded joint was found to correspond to microhardness measurement. The microstructure was characterized by the presence of severely deformed grains and fine recrystallized grains depending on the region. Tensile tests shows the optimum condition was obtained at the tool rotating speed of 600rpm and the traveling speed range from 180 to 300mm/min.

2017 ◽  
Vol 37 (1) ◽  
pp. 6-21 ◽  
Author(s):  
C. Rajendrana ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractAA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.


Author(s):  
Rasha M . Hussien

Friction stir welding (FSW) has many advantages when compared with another fusion welding. The experimental analysis and optimization of friction stir welding (FSW) were done to obtain desired mechanical properties of dissimilar aluminum welded plates (2024T3 and 7075T6). The friction stir welding process was done on aluminum plates (2024T3 and 7075T6) for different three rotating speeds (710, 1120 and 1800), three welding speeds (25, 50 and 77), three different steel tools (Square, cylindrical and Hexagonal) and 2° title angle. The different tests of welding were done according to the orthogonal matrix of experimental design analysis, then a tensile test was done to calculate the ultimate stress to get the welding efficiency. The optimum welding environment led to the maximum efficiency was obtained by these methods (Taguchi, Particle Swarm Optimization and new modified Particle Swarm Optimization). Particle swarm optimization (and its new modification) used an artificial neural network to find the relation between the input and output parameters. The results showed that when the rotating speed is increased and welding speed is decreased (but this conclusion depends on tool shape) the welding efficiency is increased. The present study showed that the modified PSO is the best method to find the optimum welding environment as compared with experimental results


2021 ◽  
Author(s):  
Bazani Shaik ◽  
Gosala Harinath Gowd ◽  
Bandaru Durga Prasad

Today is an era of metals including Aluminum alloys owing to a fundamental paradigm shift in research objectives. In addition to superior performance and lightweight criteria that are used to define the innovations of yore, scientists today are compelled to take into consideration the environment-friendliness of the new and novel materials being developed due to the concerns of maintaining a sustainable and safe existence. The solid-state Friction stir welding process has immense potential in the areas of automobiles, aerospace and construction industries due to its overwhelming advantages over the conventional fusion welding process of aluminum alloys. The thesis presents an experimental investigation of friction stir welding of dissimilar aluminum alloys AA7075T651 and AA6082T651. Mathematical modeling equations are developed to predict the tensile strength, impact strength, elongation, and micro-hardness of the dissimilar FSW joints AA7075T651 and AA6082T651. The process parameters are optimized for maximum tensile strength and hardness values. Post weld heat treatment is conducted and the metallurgical properties of the FS welded AA7075T651 and AA6082T651 are presented for different combinations of tool rotational speeds. Aluminum and its alloys are widely used in nonferrous alloys for many industrial applications. Aluminum exhibits a combination of an excellent mechanical strength with lightweight and thus it is steadily replacing steel in industrial applications where the strength to weight ratio plays a significant role. In conventional welding, the joining of aluminum is mainly associated with a high coefficient of thermal expansion, solidification shrinkage and dissolution of harmful gases in the molten metal during welding. The weld joints are also associated with segregation of secondary alloys and porosities which are detrimental to the joint qualities. Friction Stir Welding (FSW) and Friction Welding (FW) are the most popular emerging solid welding techniques in aircraft and shipbuilding industries. FSW is mainly used for the joining of metal plates and FW is mainly used for the joining of rods. Both techniques are suitable for high strength material having less weight. These techniques are environmentally friendly and easy to execute. Hence, the study of these techniques can contribute much to the field of green technology. This research work is dealt with the experimental and numerical investigations on FSW and FW of aluminum alloys.


2021 ◽  
Vol 25 (Special) ◽  
pp. 2-124-2-134
Author(s):  
Omer T. Abbas ◽  
◽  
Abbas A. Ayoub ◽  
Fouad A. Saleh ◽  
◽  
...  

Friction stir welding (FSW) process is a solid-state joining invented via the Welding Institute in 1991 at a great rate emerging as an application by fusion welding for joining different alloys. The wrought aluminum alloy 6061 is heat treatable and possesses a high corrosion resistance. This alloy has been used in a wide range of applications, like arenas gymnasiums and trains bodies. Aluminum alloy 6061 cannot be easily welded by the conventional fusion welding process because of the cracks that make the mechanical of welding joint very weak. In FSW, many parameters effect on its welding process. In the present research, the pre-heating effect on the aluminum 6061 sheet at 100°C and 150°C was studied. This heat has to be given for obtaining a defect-free as well as quality joint. Result manifested that the welding without pre-heating the parent metal at a (1120 r.p.m) rotational speed and a (30 mm/min) welding speed gave the best result of the ultimate tensile strength (236 N/mm2).


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2042
Author(s):  
Elizabeth Hoyos ◽  
María Camila Serna

Friction Stir Welding (FSW) is a solid-state welding process that has multiple advantages over fusion welding. The design of tools for the FSW process is a factor of interest, considering its fundamental role in obtaining sound welds. There are some commercially available alternatives for FSW tools, but unlike conventional fusion welding consumables, their use is limited to very specific conditions. In this work, equations to act as guidelines in the design process for FSW tools are proposed for the 2XXX, 5XXX, 6XXX, and 7XXX aluminum series and any given thickness to determine: pin length, pin diameter, and shoulder diameter. Over 80 sources and 200 tests were used and detailed to generate these expressions. As a verification approach, successful welds by authors outside the scope of the original review and the tools used were evaluated under this development and used as case studies or verification for the guidelines. Variations between designs made using the guidelines and those reported by other researchers remain under 21%.


Author(s):  
Lewis N. Payton ◽  
Vishnu Vardhan Chandrasekaran ◽  
Wesley S. Hunko

A dimensionless correlation is developed based on Buckingham’s Pi-Theorem to estimate the temperature fields generated by the movement of a tool during the Friction Stir Welding of an aluminum alloy (6061-T6). Symmetrical thermocouple measurements are taken during a statistically designed experiment using different factor levels (RPM, Traverse, etc). Analytical comparison (using multivariate ANOVA) validates the predicted dimensionless correlation including the often-reported difference between the advancing versus retreating side of the Friction Stir Tool.


2021 ◽  
Vol 880 ◽  
pp. 57-62
Author(s):  
Normariah Che Maideen ◽  
Salina Budin ◽  
Koay Mei Hyie ◽  
Nor Azirah Mohd Fohimi

Stirring tool is one of the important factor that contribute to the successful of Friction Stir Welding (FSW). Role of tool, is to heat the welding zone and stir the material along the process. Many studies have been conducted by other researchers to improve the performance of stirring tool. Similar to this work, it is aimed to investigate and analyze the effect of stirring tool surface condition on wear characteristics in friction stir welding process. Four tools have been fabricated with pre-determined surface condition. Tool 1: H13 without heat treatment and without coating. Tool 2: H13 with heat treatment only. Tool 3: H13 with TiCN coating only and Tool 4: H13 with heat treatment and with TiCN coating. Friction stir welding was performed to test and verify the performance of fabricated tools. Process parameter used are 1270 RPM for rotating speed while 218 mm/min for welding speed. From the result, Tool 4 performed better in terms of physical wear as well as wear rate.


2016 ◽  
Vol 45 (2) ◽  
pp. 118-122
Author(s):  
G. Gopala Krishna ◽  
P.Ram Reddy ◽  
M.Manzoor Hussain

In recent year’s aluminium and aluminium alloys are most widely used in many applications because of light weight, good formability and malleability, corrosion resistance, moderate strength and low cost. Friction Stir Welding (FSW) process is efficient and cost effective method for welding aluminium and aluminium alloys. FSW is a solid state welding process that means the material is not melted during the process. Complete welding process accomplishes below the melting point of materials so it overcomes many welding defects that usually happens with conventional fusion welding technique which were initially used for low melting materials. Though this process is initially developed for low melting materials but now process is widely used for a variety of other materials including titanium, steel and also for composites. The present butt jointed FSW experimental work has been done in two ways. Initially a comparison of tensile properties of friction stir (FS) welded similar aluminium alloy (AA6351 with AA6351) and dissimilar aluminium alloy (AA6351 with AA5083) combinations. Later the effect of impurities (copper and brass) in sheet form (0.1 mm thick) when used as insert in between two dissimilar aluminium alloy (AA6351 with AA5083) plates during FSW. Tensile tests were performed for these combinations and results were compared for with and without using strip material (copper and brass).


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


Sign in / Sign up

Export Citation Format

Share Document