The effect of primary processing parameters on surface roughness in laser powder bed additive manufacturing

2019 ◽  
Vol 103 (9-12) ◽  
pp. 4411-4422 ◽  
Author(s):  
Bo Whip ◽  
Luke Sheridan ◽  
Joy Gockel
Author(s):  
Junjie Luo ◽  
Heng Pan ◽  
Edward C. Kinzel

Selective laser melting (SLM) is a technique for the additive manufacturing (AM) of metals, plastics, and even ceramics. This paper explores using SLM for depositing glass structures. A CO2 laser is used to locally melt portions of a powder bed to study the effects of process parameters on stationary particle formation as well as continuous line quality. Numerical modeling is also applied to gain insight into the physical process. The experimental and numerical results indicate that the absorptivity of the glass powder is nearly constant with respect to the processing parameters. These results are used to deposit layered single-track wide walls to demonstrate the potential of using the SLM process for building transparent parts. Finally, the powder bed process is compared to a wire-fed approach. AM of glass is relevant for gradient index optics, systems with embedded optics, and the formation of hermetic seals.


Author(s):  
Jiahui Ye ◽  
Mohamad Mahmoudi ◽  
Kubra Karayagiz ◽  
Luke Johnson ◽  
Raiyan Seede ◽  
...  

Abstract Modeling and simulation for additive manufacturing (AM) are critical enablers for understanding process physics, conducting process planning and optimization, and streamlining qualification and certification. It is often the case that a suite of hierarchically linked (or coupled) simulation models is needed to achieve the above task, as the entirety of the complex physical phenomena relevant to the understanding of process-structure-property-performance relationships in the context of AM precludes the use of a single simulation framework. In this study using a Bayesian network approach, we address the important problem of conducting uncertainty quantification (UQ) analysis for multiple hierarchical models to establish process-microstructure relationships in laser powder bed fusion (LPBF) AM. More significantly, we present the framework to calibrate and analyze simulation models that have unmeasurable variables, which are quantities of interest predicted by an upstream model and necessary for the downstream model in the chain that are difficult or impossible to observe experimentally. We validate the framework using a case study on predicting the microstructure of binary nickel-niobium alloys processed using LPBF as a function of processing parameters. Our framework is shown to be able to predict segregation of niobium with up to 94.3% prediction accuracy in test data.


Author(s):  
Weiwei Liu ◽  
Qian Lyu ◽  
Liming Lei ◽  
Yanhao Hou ◽  
Lei Shi

Through the simulation of abrasive flow in the inner cavity of the superalloy pre-spinning nozzle made by additive manufacturing, the special abrasive polishing tool is optimized and the surface polishing technology of the inner cavity of typical structure test pieceis studied. Through comparison of the surface morphology before and after polishing, it can be concluded that the abrasive flow has a considerable removal effect on the powder sticking effect, spheroidizing effect, step effect, slag hanging phenomenon and residual support on the surface of parts, but it has a limited effect on the surface pit of the substrate. After polishing, the surface roughness of the inner cavity of parts decreasea from Ra 3.1397 μm to Ra 0.5805 μm, and the surface roughness of blade position decreases from Ra 4.8473 μm to Ra 0.3606 μm. Through the range analysis, it is found that the effect intensity of the processing parameters on the surface roughness of the parts is in order of the processing time, processing pressure and abrasive particle size.


Author(s):  
C. Taute ◽  
H. Möller ◽  
A. du Plessis ◽  
M. Tshibalanganda ◽  
M. Leary

SYNOPSIS Additive manufacturing can be used to produce complex and custom geometries, consolidating different parts into one, which in turn reduces the required number of assemblies and allows distributed manufacturing with short lead times. Defects, such as porosity and surface roughness, associated with parts manufactured by laser powder bed fusion, can severely limit industrial application. The effect these defects have on corrosion and hence long-term structural integrity must also be taken into consideration. The aim of this paper is to report on the characterization of porosity in samples produced by laser powder bed fusion, with the differences in porosity induced by changes in the process parameters. The alloy used in this investigation is AlSi10Mg, which is widely used in the aerospace and automotive industries. The sample characteristics, obtained by X-ray tomography, are reported. The design and production of additively manufactured parts can be improved when these defects are better understood. Keywords: additive manufacturing, L-PBF, AlSi10Mg, porosity, surface roughness, density.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 24
Author(s):  
D’Accardi ◽  
Altenburg ◽  
Maierhofer ◽  
Palumbo ◽  
Galietti

One of the most advanced technologies of Metal Additive Manufacturing (AM) is the Laser Powder Bed Fusion process (L-PBF), also known as Selective Laser Melting (SLM). This process involves the deposition and fusion, layer by layer, of very fine metal powders and structure and quality of the final component strongly depends on several processing parameters, for example the laser parameters. Due to the complexity of the process it is necessary to assure the absence of defects in the final component, in order to accept or discard it. Thermography is a very fast non-destructive testing (NDT) technique. Its applicability for defect detection in AM produced parts would significantly reduce costs and time required for NDT, making it versatile and very competitive.


Author(s):  
TC Leça ◽  
TEF Silva ◽  
AMP de Jesus ◽  
Rui L Neto ◽  
Jorge L Alves ◽  
...  

The sharp growth that additive manufacturing has been showing recently has broadened its application field and resulted in more varied demand of high-volume parts as well as a general increase in part series. The current focus on productivity enhancement of additive manufacturing has imposed the implementation of multiple-laser systems with larger scan fields. Its usage, combined with adequate layer thickness and laser power selection, makes high-volume parts less challenging to obtain. This paper focuses on understanding the influence of using multiple-scan fields for the fabrication of large components, especially on the parts region corresponding to scan field interface. The microstructure as well as mechanical behaviour of the multi-field manufactured samples are compared with parts fabricated using a single-field, for distinct processing parameters. Moreover, given the unreliability of additive manufacturing regarding dimensional and geometrical tolerances with increasing build rates, post-processing metal-cutting operations were studied towards additive manufacturing process hybridization. Despite the typical additive manufacturing process variability, a set of parameters, within testing conditions, could be identified as the most appropriate solution towards mechanical strength enhancement. Nonetheless, porosity levels can significantly impact the ductility of parts, which may be additionally compromised by its occurrence in the scan-field interface region.


Author(s):  
Jacob C. Snyder ◽  
Karen A. Thole

Abstract Surface roughness is a well-known consequence of additive manufacturing methods, particularly powder bed fusion processes. To properly design parts for additive manufacturing, a comprehensive understanding of the inherent roughness is necessary. While many researchers have measured different surface roughness resultant from a variety of parameters in the laser powder bed fusion process, few have succeeded in determining causal relationships due to the large number of variables at play. To assist the community in understanding the roughness in laser powder bed fusion processes, this study explored several studies from the literature to identify common trends and discrepancies amongst roughness data. Then, an experimental study was carried out to explore the influence of certain process parameters on surface roughness. Through these comparisons, certain local and global roughness trends have been identified and discussed, as well as a new framework for considering the effect of process parameters on surface roughness.


Sign in / Sign up

Export Citation Format

Share Document