Green manufacturing with a bionic surface structured grinding wheel-specific energy analysis

2019 ◽  
Vol 104 (5-8) ◽  
pp. 2999-3005
Author(s):  
Haiyue Yu ◽  
Yushan Lyu ◽  
Jun Wang
2008 ◽  
Vol 53-54 ◽  
pp. 209-214 ◽  
Author(s):  
Shi Chao Xiu ◽  
Ya Dong Gong ◽  
Guang Qi Cai

In high and super-high speed grinding process, there is an airflow layer with high speed around the circle edge of the grinding wheel that hinders the grinding fluid into contact layer, namely, the air barrier effect. The speed of airflow layer is directly proportional to the square of the wheel speed. Quick-point grinding is a new type of high and super-high speed grinding process with a point contact zone and less grinding power. The edge effect of the air barrier is weakened because the thin CBN wheel is applied in the process. By the analysis of dynamic pressure and velocity distributions in the airflow layer around the wheel edge, the mathematic models of the flow and jet pressure of grinding fluid for effective supply in the process were established and the process of optimization calculation of the jet nozzle diameter for green manufacturing was also analyzed based on the thermodynamics and the technical character of quick-point grinding process. The quick-point grinding experiment for surface integrity influenced by grinding fluid supply parameters was performed.


Author(s):  
James D. Campbell

The objective of this paper was to compare the creep feed superabrasive machining of an alpha-beta structural titanium alloy, using a water-soluble and a straight oil grinding fluid, in terms of residual stress, specific energy, power flux and microstructure. The statistical effect of process variables on these criteria was investigated using a Taguchi screening design of experiment. Grinding wheel peripheral velocity, abrasive size and fluid type were the most important factors contributing to compressive residual stress. After the depth of cut, fluid type contributed the most variation to specific energy and power flux. Both fluids produced testpieces that were microstructurally sound, and were essentially stress free or had favorable compressive residual stress.


1972 ◽  
Vol 94 (3) ◽  
pp. 833-842 ◽  
Author(s):  
S. Kannappan ◽  
S. Malkin

An investigation is described of the effects of grain size and operating parameters on the mechanics of grinding. Results indicate that the specific cutting energy in grinding, which is the total specific grinding energy minus the specific energy due to sliding between the wear flats and the workpiece, is independent of grain size and decreases with increasing table speed and downfeed. It is postulated that the specific cutting energy consists of chip forming energy which is independent of table speed and downfeed, and plowing energy which decreases with increasing table speed and downfeed. Results for G-ratio, surface finish, and burning conditions are also presented. Of particular interest are the effects of grain size on burning conditions. With finer grain size, burning occurs at larger wear flat area and energy input per unit area ground, but the G-ratio and grinding wheel tool life are less. This is related to increased attritious wear with finer grains.


2021 ◽  
Vol 39 (3) ◽  
pp. 810-816
Author(s):  
Wan Nurlaila Mat Desa ◽  
Ahmad Fudholi ◽  
Henny Sudibyo ◽  
Ghalya Pikra ◽  
Nugrahaning Sani Dewi ◽  
...  

In this study, a greenhouse solar dryer with double-pass multi-hollow collector for leaf drying was design, constructed, and evaluated. From the result, the double pass solar air collector with multi-hollow tube is capable of increasing air temperature by 5.5℃-10.8℃ compared to ambient air temperature. Thermal efficiency of the dryer was evaluated for passive and active modes, where 47.2% and 50% are recorded respectively. The moisture reduction on mass basis in passive and active dryer recorded was 44% and 74%, respectively. The specific moisture extraction rate (SMER) and specific energy consumption (SEC) of passive dryer was determined to be 0.198 kg per kWh and 5.047 kWh per kg, and active dryer at 0.210 kg per kWh and 4.769 kWh per kg, respectively.


2011 ◽  
Vol 325 ◽  
pp. 147-152
Author(s):  
Qiu Lin Niu ◽  
Guo Giang Guo ◽  
Xiao Jiang Cai ◽  
Zhi Qiang Liu ◽  
Ming Chen

As two kinds of advanced titanium alloys, TC18 and TA19 were introduced in this paper. The machinabilities of TC18 and TA19 alloys were described in the grinding process. Grinding experiments were completed using green silicon carbide grinding wheel with the coarser 100 grit. Grinding forces and specific energy in surface grinding were investigated. And then, for studying the grinding characteristic, SEM images of the workpiece material were obtained. The results indicated that specific chip formation had the great effect on the mechanism of grinding TC18 and TA19 alloys, and the scratch was the main characteristic of surface grinding. TC18 alloy had the poor grinding performance compared to TA19 alloy.


Author(s):  
A. I. Nizhegorodov

An energy analysis of an electric furnace with a vibration hearth using previously obtained analytical absorption models and a new, refined model of vermiculite heat assimilation is presented. The temperature-time equation, the formulas of the productivity of the furnace unit and the specific energy intensity of the calcination of vermiculite concentrates are obtained. It is shown that the new concept furnaces have a specific energy intensity of not more than 77.8 mJ/m3, which is more than three times lower than the energy intensity of fiery furnaces for roasting vermiculite. Ill. 4. Ref. 14.


Sign in / Sign up

Export Citation Format

Share Document