Development of a novel rectangular–circular grid filling pattern of fused deposition modeling in cellular lattice structures

2020 ◽  
Vol 108 (11-12) ◽  
pp. 3419-3436
Author(s):  
Wangjia Liu ◽  
Yongxiang Li ◽  
Bingshan Liu ◽  
Gong Wang
Author(s):  
Guoying Dong ◽  
Daniel Tessier ◽  
Yaoyao Fiona Zhao

AbstractAdditive manufacturing (AM) has enabled great application potential in several major industries. The footwear industry can customize shoe soles fabricated by AM. In this paper, lattice structures are discussed. They are used to design functional shoe soles that can have controllable stiffness. Different topologies such as Diamond, Grid, X shape, and Vintiles are used to generate conformal lattice structures that can fit the curved surface of the shoe sole. Finite element analysis is conducted to investigate stress distribution in different designs. The fused deposition modeling process is used to fabricate the designed shoe soles. Finally, compression tests compare the stiffness of shoe soles with different lattice topologies. It is found that the plantar stress is highly influenced by the lattice topology. From preliminary calculations, it has been found that the shoe sole designed with the Diamond topology can reduce the maximum stress on the foot. The Vintiles lattice structure and the X shape lattice structure are stiffer than the Diamond lattice. The Grid lattice structure buckles in the experiment and is not suitable for the design.


Author(s):  
Francesco Leonardi ◽  
Serena Graziosi ◽  
Riccardo Casati ◽  
Francesco Tamburrino ◽  
Monica Bordegoni

Abstract3D printed heterogeneous lattice structures are beam-and-node based structures characterised by a variable geometry. This variability is obtained starting from a periodic structure and modifying the relative density of the unit cells or by combining unit cells having different shapes. While several consolidated design approaches are described to implement the first approach, there are still computational issues to be addressed to combine different cells properly. In this paper, we describe a preliminary experimental study focused on exploring the design issues to be addressed as well as the advantages that this second type of heterogeneous structures could provide. The Three-Point-Bending test was used to compare the behaviour of different types of heterogeneous structures printed using the Fused Deposition Modeling (FDM) technology. Results demonstrated that the possibility of combining multiple unit cells represents a valid strategy for performing a more effective tuning of the material distribution within the design space. However, further studies are necessary to explore the behaviour of these structures and develop guidelines for helping designers in exploiting their potential.


Enfoque UTE ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 13-27
Author(s):  
Juan Carlos Parra Mena ◽  
Erling Ricardo Gallardo Vizuete ◽  
Erick Damian Torres Peñaloza

The evaluation of the tensile strength of printed parts by means of fused deposition modeling (FDM) or fused filament fabrication (FFF) is essential, since parts whose resistance does not differ significantly depending on the percentage of filling used can be obtained, optimizing the use of the material. The present work details the analysis of polylactic acid (PLA) specimens manufactured according to ASTM D 638 with different percentages for the most commonly used filling patterns (Honeycomb, Octagram, Stars, Archimedean, Hilbert and Triangles). With the help of an analysis of variance and a design of experiments with a single factor, the appropriate percentages for printing parts according to the desired filling pattern are obtained.


2021 ◽  
Vol 11 (21) ◽  
pp. 10489
Author(s):  
Shaheen Perween ◽  
Muhammad Fahad ◽  
Maqsood A. Khan

Additive manufacturing (AM) has a greater potential to construct lighter parts, having complex geometries with no additional cost, by embedding cellular lattice structures within an object. The geometry of lattice structure can be engineered to achieve improved strength and extra level of performance with the advantage of consuming less material and energy. This paper provides a systematic experimental evaluation of a series of cellular lattice structures, embedded within a cylindrical specimen and constructed according to terms and requirements of ASTMD1621-16, which is standard for the compressive properties of rigid cellular plastics. The modeling of test specimens is based on function representation (FRep) and constructed by fused deposition modeling (FDM) technology. Two different test series, each having eleven test specimens of different parameters, are printed along with their replicates of 70% and 100% infill density. Test specimens are subjected to uniaxial compressive load to produce 13% deformation to the height of the specimen. Comparison of results reveals that specimens, having cellular lattice structure and printed with 70% infill density, exhibit greater strength and improvement in strength to mass ratio, as compared to the solid printed specimen without structure.


2019 ◽  
Vol 181 ◽  
pp. 108065 ◽  
Author(s):  
Wenfeng Liu ◽  
Hongwei Song ◽  
Zhe Wang ◽  
Jiangtao Wang ◽  
Chenguang Huang

Author(s):  
R Rezaei ◽  
MR Karamooz Ravari ◽  
M Badrossamay ◽  
M Kadkhodaei

In recent years, cellular lattice structures are of interest due to their high strength in combination with low weight. They may be used in various areas such as aerospace and automotive industries. Accordingly, assessment of their manufacturability, repeatability and mechanical properties is very important. In this paper, these issues are investigated for Polylactic Acid cellular lattice structures fabricated by fused deposition modeling. To do so, some benchmarks are designed and fabricated to find suitable processing parameters as well as the structural dimensions. In addition, to evaluate the mechanical properties of the lattice’s material, a number of tension and compression specimens are fabricated and tested. The material’s stress–strain curves reveal non-linear behaviors. These curves are not coincided in tension and compression which shows an asymmetric material behavior. To characterize the fabricated cellular lattices, they are tested in compression, and the deformation mechanisms of the structures are analyzed. To investigate the correlation between the bulk material and the material of the ligaments, a solid finite element model is developed to predict the stress–strain response of the lattice. The obtained result shows a reasonably good correlation between the model and experiments.


Sign in / Sign up

Export Citation Format

Share Document