Analytical modelling of cutting forces in ultra-precision fly grooving considering effects of trans-scale chip thickness variation and material microstructure

Author(s):  
Zhanwen Sun ◽  
Suet To ◽  
Peizheng Li ◽  
Sujuan Wang ◽  
Tao Zhang
Author(s):  
Yun Chen ◽  
Huaizhong Li ◽  
Jun Wang

Titanium and its alloys are difficult to machine due to their high chemical reactivity with tool materials and low thermal conductivity. Chip segmentation caused by the thermoplastic instability is always observed in titanium machining processes, which leads to varied cutting forces and chip thickness, etc. This paper presents an analytical modelling approach for cutting forces in near-orthogonal cutting of titanium alloy Ti6Al4V. The catastrophic shear instability in the primary shear plane is assumed as a semi-static process. An analytical approach is used to evaluate chip thicknesses and forces in the near-orthogonal cutting process. The shear flow stress of the material is modelled by using the Johnson–Cook constitutive material law where the strain hardening, strain rate sensitivity and thermal softening behaviours are coupled. The thermal equations with non-uniform heat partitions along the tool–chip interface are solved by a finite difference method. The model prediction is verified with experimental data, where a good agreement in terms of the average cutting forces and chip thickness is shown. A comparison of the predicted temperatures with published data obtained by using the finite element method is also presented.


1994 ◽  
Vol 116 (1) ◽  
pp. 17-25 ◽  
Author(s):  
J.-J. Junz Wang ◽  
S. Y. Liang ◽  
W. J. Book

This paper presents the establishment of a closed form expression for the dynamic forces as explicit functions of cutting parameters and tool/workpiece geometry in milling processes. Based on the existing local cutting force model, the generation of total cutting forces is formulated as the angular domain convolution of three cutting process component functions, namely the elementary cutting function, the chip width density function, and the tooth sequence function. The elemental cutting force function is related to the chip formation process in an elemental cutting area and it is characterized by the chip thickness variation, and radial cutting configuration. The chip width density function defines the chip width per unit cutter rotation along a cutter flute within the range of axial depth of cut. The tooth sequence function represents the spacing between flutes as well as their cutting sequence as the cutter rotates. The analysis of cutting forces is extended into the Fourier domain by taking the frequency multiplication of the transforms of the three component functions. Fourier series coefficients of the cutting forces are shown to be explicit algebraic functions of various tool parameters and cutting conditions. Numerical simulation results are presented in the frequency domain to illustrate the effects of various process parameters. A series of end milling experiments are performed and their results discussed to validate the analytical model.


1997 ◽  
Vol 119 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Li Zheng ◽  
S. Y. Liang

The scope of the paper is to discuss the identification of cutter axis tilt in end milling process via cutting force analysis. Cutter axis tilt redistributes the chip load among flutes thereby generating minor frequency components of cutting forces. These minor components can be utilized to infer the tilt geometry during the cutting action. This study involved the mathematical representation of chip thickness variation due to tilt, the modeling of local forces in relation to instantaneous chip thickness, the formulation of total cutting forces through convolution integration in the angle domain, the derivation of dynamic force components in the frequency domain, and the solution for tilt geometry from the dynamic cutting forces. Results show that the tilt magnitude and orientation can be estimated given the dynamic cutting force components along with the tool/work geometry, cutting parameters, and machining configuration. Numerical simulation results confirmed the validity of the angle domain convolution approach, and the end milling experimental data agreed with the analytical model.


Author(s):  
Zhipeng Pan ◽  
Yixuan Feng ◽  
Xia Ji ◽  
Steven Y. Liang

Thermal mechanical loadings in machining process would promote material microstructure changes. The material microstructure evolution, such as grain size evolution and phase transformation could significantly influence the material flow stress behavior, which will directly affect the machining forces. An analytical model is proposed to predict cutting forces during the turning of AISI 4130 steel. The material dynamic recrystallization is considered through Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. The explicit calculation of average grain size is provided in an analytical model. The grain size effect on the material flow stress is considered by introducing the Hall-Petch relation into a modified Johnson-Cook model. The cutting forces prediction are based on Oxley’s contact mechanics with consideration of mechanical and thermal loads. The model is validated by comparing the predicted machining forces with experimental measurements.


Author(s):  
W. Ferry ◽  
Y. Altintas

Jet engine impeller blades are flank-milled with tapered, helical, ball-end mills on five-axis machining centers. The impellers are made from difficult-to-cut titanium or nickel alloys, and the blades must be machined within tight tolerances. As a consequence, deflections of the tool and flexible workpiece can jeopardize the precision of the impellers during milling. This work is the first of a two part paper on cutting force prediction and feed optimization for the five-axis flank milling of an impeller. In Part I, a mathematical model for predicting cutting forces is presented for five-axis machining with tapered, helical, ball-end mills with variable pitch and serrated flutes. The cutter is divided axially into a number of differential elements, each with its own feed coordinate system due to five-axis motion. At each element, the total velocity due to translation and rotation is split into horizontal and vertical feed components, which are used to calculate total chip thickness along the cutting edge. The cutting forces for each element are calculated by transforming friction angle, shear stress and shear angle from an orthogonal cutting database to the oblique cutting plane. The distributed cutting load is digitally summed to obtain the total forces acting on the cutter and blade. The model can be used for general five-axis flank milling processes, and supports a variety of cutting tools. Predicted cutting force measurements are shown to be in reasonable agreement with those collected during a roughing operation on a prototype integrally bladed rotor (IBR).


Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


2004 ◽  
Vol 126 (2) ◽  
pp. 408-411
Author(s):  
Ning Fang

This paper presents a new quantitative sensitivity analysis of cutting performances in orthogonal machining with restricted contact and flat-faced tools, based on a recently developed slip-line model. Cutting performances are comprehensively measured by five machining parameters, i.e., the cutting forces, the chip back-flow angle, the chip up-curl radius, the chip thickness, and the tool-chip contact length. It is demonstrated that the percentage of contribution of tool-chip friction to the variation of cutting performances depends on different types of machining operations. No general conclusion about the effect of tool-chip friction should be made before specifying a particular type of machining operation and cutting conditions.


Author(s):  
Zied Sahraoui ◽  
Kamel Mehdi ◽  
Moez Ben Jaber

Nowadays, industrialists, especially those in the automobile and aeronautical transport fields, seek to lighten the weight of different product components by developing new materials lighter than those usually used or by replacing some massive parts with thin-walled hollow parts. This lightening operation is carried out in order to reduce the energy consumption of the manufactured products while guaranteeing optimal mechanical properties of the components and increasing quality and productivity. To achieve these objectives, some research centers have focused their work on the development and characterization of new light materials and some other centers have focused their work on the analysis and understanding of the encountered problems during the machining operation of thin-walled parts. Indeed, various studies have shown that the machining process of thin-walled parts differs from that of rigid parts. This difference comes from the dynamic behavior of the thin-walled parts which is different from that of the massive parts. Therefore, the purpose of this paper is to first highlight some of these problems through the measurement and analysis of the cutting forces and vibrations of tubular parts with different thicknesses in AU4G1T351 aluminum alloy during the turning process. The experimental results highlight that the dynamic behavior of turning process is governed by large radial deformations of the thin-walled workpieces and the influence of this behavior on the variations of the chip thickness and cutting forces is assumed to be preponderant. The second objective is to provide manufacturers with a practical solution to the encountered vibration problems by improving the structural damping of thin-walled parts by additional damping. It is found that the additional structural damping increases the stability of the cutting process and reduces considerably the vibrations amplitudes.


Sign in / Sign up

Export Citation Format

Share Document