A Novel Approach to Extract Knowledge from Simulation Results

2002 ◽  
Vol 20 (5) ◽  
pp. 390-396 ◽  
Author(s):  
X. Shi ◽  
J. Chen ◽  
H. Yang ◽  
Y. Peng ◽  
X. Ruan
Author(s):  
Supriya Raheja

Background: The extension of CPU schedulers with fuzzy has been ascertained better because of its unique capability of handling imprecise information. Though, other generalized forms of fuzzy can be used which can further extend the performance of the scheduler. Objectives: This paper introduces a novel approach to design an intuitionistic fuzzy inference system for CPU scheduler. Methods: The proposed inference system is implemented with a priority scheduler. The proposed scheduler has the ability to dynamically handle the impreciseness of both priority and estimated execution time. It also makes the system adaptive based on the continuous feedback. The proposed scheduler is also capable enough to schedule the tasks according to dynamically generated priority. To demonstrate the performance of proposed scheduler, a simulation environment has been implemented and the performance of proposed scheduler is compared with the other three baseline schedulers (conventional priority scheduler, fuzzy based priority scheduler and vague based priority scheduler). Results: Proposed scheduler is also compared with the shortest job first CPU scheduler as it is known to be an optimized solution for the schedulers. Conclusion: Simulation results prove the effectiveness and efficiency of intuitionistic fuzzy based priority scheduler. Moreover, it provides optimised results as its results are comparable to the results of shortest job first.


Author(s):  
Lei Si ◽  
Zhongbin Wang ◽  
Xinhua Liu

In order to accurately and conveniently identify the shearer running status, a novel approach based on the integration of rough sets (RS) and improved wavelet neural network (WNN) was proposed. The decision table of RS was discretized through genetic algorithm and the attribution reduction was realized by MIBARK algorithm to simply the samples of WNN. Furthermore, an improved particle swarm optimization algorithm was proposed to optimize the parameters of WNN and the flowchart of proposed approach was designed. Then, a simulation example was provided and some comparisons with other methods were carried out. The simulation results indicated that the proposed approach was feasible and outperforming others. Finally, an industrial application example of mining automation production was demonstrated to verify the effect of proposed system.


2021 ◽  
Author(s):  
Ziwei Ge ◽  
Hongyan Liu

Abstract Rockfall triggered by earthquakes can cause severe infrastructure losses and even fatalities. The flexible protective barrier is an efficient rockfall protection system that has been widely used against rockfall. This studyproposed a novel approach to simulate a field test of rockfall impacting the flexible barrier, and the simulation results showed an excellent match with the field test results. Based on this approach, the seismic loading was applied to the numerical model, and four types of seismic loading were adopted, e.g., non-seismic, x-directional seismic, y-directional seismic, and z-directional seismic. This study aims at investigating the dynamic behavior of the flexible protective barrier under different seismic loading during the rockfall impact process. The following findings can be obtained from the simulation results. First of all, the seismic loading can increase the maximum elongation and decrease the final elongation of the flexible protective barrier comparing to non-seismic loading. Second, the largest deformation area of the protective barrier is at the diagonal position when x-directional seismic loading was applied, which is at the vertical bisector position when y-directional and z-directional seismic loading was applied. Third, the maximum elongation of the protective barrier decreased with the increasing seismic wave period. But in general, the amplitude and period of seismic waves have negligible effects on the elongation, maximum normal stress, and maximum shear stress of the flexible protective barrier.


Author(s):  
Mohamed B. Trabia ◽  
Woosoon Yim ◽  
Paul Weinacht ◽  
Venkat Mudupu

The objective of this paper is to explore a method for the design of fuzzy logic controller for a smart fin used to control the pitch and yaw attitudes of a subsonic projectile during flight. Piezoelectric actuators are an attractive alternative to hydraulic actuators commonly used in this application due to their simplicity. The proposed cantilever-shaped actuator can be fully enclosed within the hollow fin with one end fixed to the rotation axle of the fin while the other end is pinned at the trailing edge of the fin. The paper includes a dynamic model of the system based on the finite element approach. The model includes external moment due to aerodynamic effects. This paper presents a novel approach for automatically creating fuzzy logic controllers for the fin. This approach uses the inverse dynamics of the smart fin system to determine the ranges of the variables of the controllers. Simulation results show that the proposed controller can successfully drive smart fin under various operating conditions.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097046
Author(s):  
Ayan Dutta ◽  
Amitabh Bhattacharya ◽  
O Patrick Kreidl ◽  
Anirban Ghosh ◽  
Prithviraj Dasgupta

We consider the NP-hard problem of multirobot informative path planning in the presence of communication constraints, where the objective is to collect higher amounts of information of an ambient phenomenon. We propose a novel approach that uses continuous region partitioning into Voronoi components to efficiently divide an initially unknown environment among the robots based on newly discovered obstacles enabling improved load balancing between robots. Simulation results show that our proposed approach is successful in reducing the initial imbalance of the robots’ allocated free regions while ensuring close-to-reality spatial modeling within a reasonable amount of time.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2601
Author(s):  
Mohammad Reza Salehizadeh ◽  
Mahdi Amidi Koohbijari ◽  
Hassan Nouri ◽  
Akın Taşcıkaraoğlu ◽  
Ozan Erdinç ◽  
...  

Exposure to extreme weather conditions increases power systems’ vulnerability in front of high impact, low probability contingency occurrence. In the post-restructuring years, due to the increasing demand for energy, competition between electricity market players and increasing penetration of renewable resources, the provision of effective resiliency-based approaches has received more attention. In this paper, as the major contribution to current literature, a novel approach is proposed for resiliency improvement in a way that enables power system planners to manage several resilience metrics efficiently in a bi-objective optimization planning model simultaneously. For demonstration purposes, the proposed method is applied for optimal placement of the thyristor controlled series compensator (TCSC). Improvement of all considered resilience metrics regardless of their amount in a multi-criteria decision-making framework is novel in comparison to the other previous TCSC placement approaches. Without loss of generality, the developed resiliency improvement approach is applicable in any power system planning and operation problem. The simulation results on IEEE 30-bus and 118-bus test systems confirm the practicality and effectiveness of the developed approach. Simulation results show that by considering resilience metrics, the performance index, importance of curtailed consumers, congestion management cost, number of curtailed consumers, and amount of load loss are improved by 0.63%, 43.52%, 65.19%, 85.93%, and 85.94%, respectively.


Author(s):  
Amitava Mukherjee ◽  
Ayan Chatterjee ◽  
Debayan Das ◽  
Mrinal K. Naskar

Networks are all-pervasive in nature. The complete structural controllability of a network and its robustness against unwanted link failures and perturbations are issues of immense concern. In this chapter, we propose a heuristic to determine the minimum number of driver nodes for complete structural control, with a reduced complexity. We also introduce a novel approach to address the vulnerability of the real-world complex networks, and enhance the robustness of the network, prior to an attack or failure. The simulation results reveal that dense and homogenous networks are easier to control with lesser driver nodes, and are more robust, compared to sparse and inhomogeneous networks.


Author(s):  
Mhamed Madark ◽  
A. Ba-Razzouk ◽  
E. Abdelmounim ◽  
M.El Malah

<p>In this paper, a novel approach to nonlinear control of induction machine, recursive on-line estimation of rotor time constant and load torque are developed. The proposed strategy combines Integrated Backstepping and Indirect Field Oriented Controls. The proposed approach is used to design controllers for the rotor flux and speed, estimate the values of rotor time constant and load torque and track their changes on-line. An open loop estimator is used to estimate the rotor flux. Simulation results are presented which demonstrate the effectiveness of the control technique and on-line estimation.</p>


2016 ◽  
Vol 14 (05) ◽  
pp. 1650026 ◽  
Author(s):  
Mani Mehraei ◽  
Rza Bashirov ◽  
Şükrü Tüzmen

Recent molecular studies provide important clues into treatment of [Formula: see text]-thalassemia, sickle-cell anaemia and other [Formula: see text]-globin disorders revealing that increased production of fetal hemoglobin, that is normally suppressed in adulthood, can ameliorate the severity of these diseases. In this paper, we present a novel approach for drug prediction for [Formula: see text]-globin disorders. Our approach is centered upon quantitative modeling of interactions in human fetal-to-adult hemoglobin switch network using hybrid functional Petri nets. In accordance with the reverse pharmacology approach, we pose a hypothesis regarding modulation of specific protein targets that induce [Formula: see text]-globin and consequently fetal hemoglobin. Comparison of simulation results for the proposed strategy with the ones obtained for already existing drugs shows that our strategy is the optimal as it leads to highest level of [Formula: see text]-globin induction and thereby has potential beneficial therapeutic effects on [Formula: see text]-globin disorders. Simulation results enable verification of model coherence demonstrating that it is consistent with qPCR data available for known strategies and/or drugs.


2014 ◽  
Vol 519-520 ◽  
pp. 1021-1026
Author(s):  
Hui Fang

Although Non-continuous OFDM (NC-OFDM) has the unique advantage of eliminating interference to authorized user in cognitive radio context, it also confronts a difficulty of reducing peak to average power ratio (PAPR) like other OFDM techniques. In this paper, carrier interferometry is proposed to apply in NC-OFDM system in order to reduce its PAPR using the construction feature of CI code itself. The coding principle of CI code is analyzed at first. Then NC-OFDM base-band system based on carrier interferometry (CI/NC-OFDM) is modeled. Theoretical analysis and matlab simulation results indicate that CI code can bring 3 dB lower PAPR reference with the same probability of exceeding some PAPR reference, compared with traditional NC-OFDM system. This method is effective and feasible and gets better BER performance as well.


Sign in / Sign up

Export Citation Format

Share Document