scholarly journals Novel analytical methods to study the fate of mycotoxins during thermal food processing

2019 ◽  
Vol 412 (1) ◽  
pp. 9-16 ◽  
Author(s):  
David Stadler ◽  
Franz Berthiller ◽  
Michele Suman ◽  
Rainer Schuhmacher ◽  
Rudolf Krska

Abstract Food processing can lead to a reduction of contaminants, such as mycotoxins. However, for food processing operations where thermal energy is employed, it is often not clear whether a reduction of mycotoxins also results in a mitigation of the toxicological impact. This is often due to the reason that the formed degradation products are not characterized and data on their toxicity is scarce. From the perspective of an analytical chemist, the elucidation of the fate of a contaminant in a complex food matrix is extremely challenging. An overview of the analytical approaches is given here, and the application and limitations are exemplified based on cases that can be found in recent literature. As most studies rely on targeted analysis, it is not clear whether the predetermined set of compounds differs from the degradation products that are actually formed during food processing. Although untargeted analysis allows for the elucidation of the complete spectrum of degradation products, only one such study is available so far. Further pitfalls include insufficient precision, natural contamination with masked forms of mycotoxins and interferences that are caused by the food matrix. One topic that is of paramount importance for both targeted and untargeted approaches is the availability of reference standards to identity and quantity the formed degradation products. Our vision is that more studies need to be published that characterize the formed degradation products, collect data on their toxicity and thereby complete the knowledge about the mycotoxin mitigating effect during food processing.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1490
Author(s):  
Wei Wang ◽  
Lu Dong ◽  
Yan Zhang ◽  
Huaning Yu ◽  
Shuo Wang

In order to reduce the formation of heterocyclic amines in grilled beef patties without destroying their unique quality characteristics, the effects of different thermal processes, including charcoal grilling, infrared grilling, superheated steam roasting and microwave heating, on the production of heterocyclic amines in beef patties and grilling quality characteristics were systematically analyzed. The results showed that infrared grilling can significantly (p < 0.05) reduce the content of heterocyclic amines in grilled patties, and the combination of microwave heating or superheated steam roasting with infrared grilling could further reduce the content of heterocyclic amines, with a maximum reduction ratio of 44.48%. While subtle differences may exist in infrared grilled patties with/without superheated steam roasting or microwave heating, a slight change will not affect the overall quality characteristics of grilled patties. The combined thermal processing will not visually affect the color of the grilled patties. Correlation analysis and regression analysis showed that the reduction in heterocyclic amines caused by microwave heating and superheated steam roasting are related to the moisture content and lipid oxidation of grilled patties, respectively. Using combined thermal processes to reduce the formation of heterocyclic amines is advisable.


2020 ◽  
Author(s):  
Oluwafemi Ayodeji Adebo ◽  
Tumisi Molelekoa ◽  
Rhulani Makhuvele ◽  
Janet Adeyinka Adebiyi ◽  
Ajibola Bamikole Oyedeji ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 221-238 ◽  
Author(s):  
Francisco A. Tomás-Barberán ◽  
Juan C. Espín

The two-way interaction of food (poly)phenols with the human gut microbiota has been studied throughout the past ten years. Research has shown that this interaction can be relevant to explain the health effects of these phytochemicals. The effect of the food matrix and food processing on this interaction has only been partially studied. In this article, the studies within this field have been critically reviewed, with a special focus on the following groups of phenolic metabolites: citrus flavanones, pomegranate ellagitannins, and cocoa proanthocyanidins. The available research shows that both the food matrix and food processing can be relevant factors for gut microbiota reshaping to reach a healthier microbial ecology and for the conversion of polyphenols to bioactive and bioavailable metabolites. There are, however, some research gaps that indicate a more comprehensive research approach is needed to reach valid conclusions regarding the gut microbiota–mediated effects of polyphenols on human health.


2004 ◽  
Vol 22 (SI - Chem. Reactions in Foods V) ◽  
pp. S80-S83 ◽  
Author(s):  
J. Pokorný ◽  
Š. Schmidt ◽  
H. T T Nguyen

Food raw materials and products contain inhibitors of oxidation reactions, both in the lipidic phase and the aqueous phase. The most important inhibitors are phenolic antioxidants. During food processing and storage, concentrations of antioxidants in the two phases reach an equilibrium. Phenolics react with lipidic free radicals, being converted into antioxidant free radicals, quinones, polymers and copolymers. Some degradation products possess an antioxidant activity, too. The relative antioxidant activity decreases with decreasing concentration of oxygen in the system and with increasing temperature. Antioxidants are more rapidly decomposed in surface layers. Health aspects of antioxidant degradation products are often neglected as the safety of antioxidant degradation products is mostly unknown.


2017 ◽  
Vol 225 ◽  
pp. 23-30 ◽  
Author(s):  
Alejandra Anahí Martínez-Delgado ◽  
Sanghamitra Khandual ◽  
Socorro Josefina Villanueva–Rodríguez

Sign in / Sign up

Export Citation Format

Share Document