1H-NMR-based metabolomics reveals the biomarker panel and molecular mechanism of hepatocellular carcinoma progression

Author(s):  
Ke-xin Wang ◽  
Guan-hua Du ◽  
Xue-mei Qin ◽  
Li Gao
2021 ◽  
pp. 1-9
Author(s):  
Hong-Wei Hua ◽  
Hao-Sheng Jiang ◽  
Ling Jia ◽  
Yi-Ping Jia ◽  
Yu-Lan Yao ◽  
...  

BACKGROUND: Secreted protein acidic and rich in cysteine (SPARC) is implicated in cancer progression, but its role and associated molecular mechanism in the sorafenib sensitivity of hepatocellular carcinoma cells (HCC) remains elusive. METHODS: Human HCC cell lines Hep3B and HepG2 were treated with sorafenib alone or combined with activator or inhibitor of ferroptosis. Cell viability assay, reactive oxygen species (ROS) assay, lactate dehydrogenase (LDH) assay and western blot were used to study the regulatory mechanism of SPARC on HCC cells. RESULTS: Overexpression of SPARC enhanced the cytotoxic effect of sorafenib in Hep3B and HepG2 cells compared with parental cells. Depletion of SPARC decreased the cytotoxic effect of sorafenib in Hep3B and HepG2 cells compared with parental cells. Moreover, overexpression of SPARC significantly induced LDH release, whereas depletion of SPARC suppressed the release of LDH in Hep3B and HepG2 cells. Inhibition of ferroptosis exerted a clear inhibitory role against LDH release, whereas activation of ferroptosis promoted the release of LDH in HCC cells, as accompanied with deregulated expression of ferroptosis-related proteins. Furthermore, overexpression of SPARC induced oxidative stress, whereas depletion of SPARC suppressed the production of ROS. Deferoxamine (DFX)-induced inhibition of ferroptosis suppressed the production of ROS, while activation of ferroptosis promoted the contents of ROS in HCC cells exposed to sorafenib. CONCLUSION: Our findings give a better understanding of ferroptosis and its molecular mechanism in HCC cells that is regulated by SPARC in response to sorafenib.


Author(s):  
Zhongwei Zhao ◽  
Jingjing Song ◽  
Bufu Tang ◽  
Shiji Fang ◽  
Dengke Zhang ◽  
...  

Abstract Background Emerging evidence suggests that circular RNAs play critical roles in disease development especially in cancers. Previous genome-wide RNA-seq studies found that a circular RNA derived from SOD2 gene was highly upregulated in hepatocellular carcinoma (HCC), however, the role of circSOD2 in HCC remains largely unknown. Methods The expression profiling of circSOD2 and microRNA in HCC patients were assessed by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). SiRNA or CRISPR-CAS9 were used to silence gene expression. The biological function of circSOD2 in HCC was investigated using in vitro and in vivo studies including, trans-well cell migration, cell apoptosis, cell cycle, CCK8, siRNA interference, western blots, and xenograft mouse model. The underlying molecular mechanism was determined by Chromatin Immunoprecipitation quantitative real time PCR (ChIP-qPCR), bioinformatic analysis, biotin-pull down, RNA immunoprecipitation, 5-mc DNA pulldown and luciferase assays. Results In accordance with previous sequencing results, here, we demonstrated that circSOD2 was highly expressed in HCC tumor tissues compared with normal liver tissues. Mechanically, we showed that histone writer EP300 and WDR5 bind to circSOD2 promoter and trigger its promoter H3K27ac and H3K4me3 modification, respectively, which further activates circSOD2 expression. SiRNA mediated circSOD2 suppression impaired liver cancer cell growth, cell migration, prohibited cell cycle progression and in vivo tumor growth. By acting as a sponge, circSOD2 inhibits miR-502-5p expression and rescues miR-502-5p target gene DNMT3a expression. As a DNA methyltransferase, upregulated DNMA3a suppresses SOCS3 expression by increasing SOCS3 promoter DNA methylation. This event further accelerates SOCS3 downstream JAK2/STAT3 signaling pathway activation. In addition, we also found that activated STAT3 regulates circSOD2 expression in a feedback way. Conclusion The novel signaling axis circSOD2/miR-502-5p/DNMT3a/JAK2/STAT3/circSOD2 provides a better understanding of HCC tumorigenesis. The molecular mechanism underlying this signaling axis offers new prevention and treatment of HCC.


Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4054-4069
Author(s):  
Wei-Jian Huang ◽  
Wei-Ying He ◽  
Jian-Di Li ◽  
Rong-Quan He ◽  
Zhi-Guang Huang ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuqi Xiang ◽  
Liyu Liu ◽  
Ying Wang ◽  
Bo Li ◽  
Jinwu Peng ◽  
...  

Abstract Background The upregulation of ADAM17 has been reported to be associated with invasion and metastasis in various tumors, however the molecular mechanism of ADAM17 in the progression of hepatocellular carcinoma (HCC) remain to be clarified. Human matrix metalloproteinase 21 (MMP21), the newest member of the MMP gene family, has been suggested to play an important role in embryogenesis and tumor progression. So far, nothing is known about the relationship between ADAM17 and MMP21. Methods In this study, the expression level of ADAM17 and MMP21 in HCC tissues was measured by immunohistochemistry. The Scratch wounding assay and Transwell were used to identify the invasion and metastasis ability. ELISA was used to evaluate the production of MMP21. Coimmunoprecipitation experiments demonstrated a direct association between ADAM17 and MMP21. HPLC was used to confirmed that ADAM17 participated in the maturation of MMP21. Results Our present data indicated that ADAM17 and MMP21 was significantly upregulated in human HCC tissues. Knockdown of ADAM17 in HCC inhibited cell invasion and metastasis. Moreover, ADAM17 regulates the secretion and expression of MMP21. Furthermore we discovered a direct association between ADAM17 and MMP21, and we also found MMP21 prodomain could be cleaved by ADAM17. Conclusion Our data suggest that ADAM17 plays an important role in the development of HCC invasion and metastasis and this function may be implement by MMP21.


2020 ◽  
Vol 19 ◽  
pp. 153303382095702
Author(s):  
Xue-zhen Song ◽  
Xiao-ning Ren ◽  
Xiao-jun Xu ◽  
Xiao-xuan Ruan ◽  
Yi-li Wang ◽  
...  

Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. Emerging evidence has suggested that lncRNAs play an important role in cancer progression, including HCC. This study aimed to comprehensively investigate the effect of lncRNA RHPN1 antisense RNA 1 (RHPN1-AS1) on HCC and its underlying molecular mechanism. In this study, we evaluated the expressions of lncRNA RHPN1-AS1 and miR-7-5p by qRT-RCR in both HCC tissue and HCC cells. Our findings showed that lncRNA RHPN1-AS1 was upregulated in HCC tissue and HCC cells, while miR-7-5p was downregulated. LncRNA RHPN1-AS1 expression in HCC patients was closely related to vascular invasion, tumor-node-metastasis (TNM) stage and barcelona clinic liver cancer (BCLC) stage. Furthermore, we quantified cell clone-formation ability, proliferation, migration and invasion of HCCLM3 and MHCC97 H cells using several assays (colony formation assay, 5-Ethynyl-2′-deoxyuridine (EdU) assay and transwell assay, respectively). Functional experiments confirmed that silencing lncRNA RHPN1-AS1 inhibited cell proliferation, migration and invasion in HCCLM3 and MHCC97 H cells. After that, bioinformatics analysis, dual luciferase reporter gene assay, qRT-PCR and western blot were used to investigate the molecular mechanism of lncRNA RHPN1-AS1 on HCC. Mechanistically, the rescue experiments demonstrated that miR-7-5p inhibitor reversed the inhibition effect of silencing lncRNA RHPN1-AS1 on HCCLM3 cells proliferation, migration and invasion. Moreover, silencing lncRNA RHPN1-AS1 also inhibited the activation of PI3K/AKT/mTOR pathway. Taken together our findings demonstrated that lncRNA RHPN1-AS1 could facilitate cell proliferation, migration and invasion via targeting miR-7-5p and activating PI3K/AKT/mTOR pathway in HCC.


2009 ◽  
Vol 136 (5) ◽  
pp. A-56
Author(s):  
John R. Petersen ◽  
Cornelis Elferink ◽  
Hyunsu Ju ◽  
Heidi Weiss ◽  
Eric T. Fung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document