Quality traits of apple puree treated with conventional, ohmic heating and high-pressure processing

Author(s):  
Massimiliano Rinaldi ◽  
Paolo Langialonga ◽  
Rohini Dhenge ◽  
Antonio Aldini ◽  
Emma Chiavaro
2010 ◽  
Vol 11 (4) ◽  
pp. 557-564 ◽  
Author(s):  
A. Landl ◽  
M. Abadias ◽  
C. Sárraga ◽  
I. Viñas ◽  
P.A. Picouet

Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1093 ◽  
Author(s):  
Massimiliano Rinaldi ◽  
Paola Littardi ◽  
Maria Paciulli ◽  
Tommaso Ganino ◽  
Emanuela Cocconi ◽  
...  

Stabilization of ohmic pretreated peach cubes (ohm) in syrup, representative of semifinished fruit products, was finalized by ohmic heating (OHM) and high pressure processing (HPP), proposed respectively as thermal and nonthermal pasteurization, in comparison to a conventional pasteurization treatment (DIM). The samples were then studied in terms of histological, physical (dimensional distribution, tenderometry, texture, viscosity of syrup and colour), chemical (total phenolic and ascorbic acid content), and sensorial (triangle test) properties. Severe modifications of the cell walls were observed in ohm-DIM and ohm-OHM samples, with swelling and electroporation, respectively. From chemical analyses, significant reduction of ascorbic acid and simultaneous increase of total phenolics content were observed for ohm-DIM and ohm-OHM, probably in relation to the cell wall damages. ohm-HPP showed the best preservation of the dimensional characteristics and hardness, followed by ohm-OHM and ohm-DIM. In addition, textural and colour parameters evidenced similar results, with ohm-HPP as the less different from ohm. Finally, the sensorial analysis confirmed ohm-HPP and ohm-OHM samples as the most similar to ohm as well as the most appreciated in terms of colour and consistency.


2019 ◽  
Vol 43 (3) ◽  
pp. e13895 ◽  
Author(s):  
Andrzej Zybert ◽  
Krystian Tarczyński ◽  
Halina Sieczkowska

LWT ◽  
2020 ◽  
Vol 134 ◽  
pp. 110207
Author(s):  
Massimiliano Rinaldi ◽  
Paola Littardi ◽  
Tommaso Ganino ◽  
Antonio Aldini ◽  
Margherita Rodolfi ◽  
...  

2021 ◽  
Vol 1868 (1) ◽  
pp. 012004
Author(s):  
Massimiliano Pelacci ◽  
Matteo Malavasi ◽  
Luca Cattani ◽  
Mario Gozzi ◽  
Fabio Tedeschi ◽  
...  

2011 ◽  
Vol 40 (8) ◽  
pp. 1136-1140 ◽  
Author(s):  
Jing-Yu Gou ◽  
Yun-Yun Zou ◽  
Geun-Pyo Choi ◽  
Young-Beom Park ◽  
Ju-Hee Ahn

2021 ◽  
Vol 38 (3) ◽  
pp. 513-531
Author(s):  
Yoon S. Song ◽  
John L. Koontz ◽  
Rima O. Juskelis ◽  
Eduardo Patazca ◽  
William Limm ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3769
Author(s):  
Noelia Pallarés ◽  
Albert Sebastià ◽  
Vicente Martínez-Lucas ◽  
Mario González-Angulo ◽  
Francisco J. Barba ◽  
...  

High-pressure processing (HPP) has emerged over the last 2 decades as a good alternative to traditional thermal treatment for food safety and shelf-life extension, supplying foods with similar characteristics to those of fresh products. Currently, HPP has also been proposed as a useful tool to reduce food contaminants, such as pesticides and mycotoxins. The aim of the present study is to explore the effect of HPP technology at 600 MPa during 5 min at room temperature on alternariol (AOH) and aflatoxin B1 (AFB1) mycotoxins reduction in different juice models. The effect of HPP has also been compared with a thermal treatment performed at 90 °C during 21 s. For this, different juice models, orange juice/milk beverage, strawberry juice/milk beverage and grape juice, were prepared and spiked individually with AOH and AFB1 at a concentration of 100 µg/L. After HPP and thermal treatments, mycotoxins were extracted from treated samples and controls by dispersive liquid–liquid microextraction (DLLME) and determined by HPLC-MS/MS-IT. The results obtained revealed reduction percentages up to 24% for AFB1 and 37% for AOH. Comparing between different juice models, significant differences were observed for AFB1 residues in orange juice/milk versus strawberry juice/milk beverages after HPP treatment. Moreover, HPP resulted as more effective than thermal treatment, being an effective tool to incorporate to food industry in order to reach mycotoxins reductions.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Monika Mieszczakowska-Frąc ◽  
Karolina Celejewska ◽  
Witold Płocharski

Nowadays, thermal treatments are used for extending the shelf-life of vegetable and fruit products by inactivating microorganisms and enzymes. On the other hand, heat treatments often induce undesirable changes in the quality of the final product, e.g., losses of nutrients, color alterations, changes in flavor, and smell. Therefore, the food industry is opening up to new technologies that are less aggressive than thermal treatment to avoid the negative effects of thermal pasteurization. Non-thermal processing technologies have been developed during the last decades as an alternative to thermal food preservation. Processing changes the structure of fruit and vegetables, and hence the bioavailability of the nutrients contained in them. In this review, special attention has been devoted to the effects of modern technologies of fruit and vegetable processing, such as minimal processing (MPFV), high-pressure processing (HPP), high-pressure homogenization (HPH), ultrasounds (US), pulsed electric fields (PEF), on the stability and bioavailability of vitamin C.


Sign in / Sign up

Export Citation Format

Share Document