scholarly journals Potential Release of Zinc and Cadmium From Mine-Affected Soils Under Flooding, a Mesocosm Study

2020 ◽  
Vol 79 (4) ◽  
pp. 421-434
Author(s):  
Elio Padoan ◽  
Aline Hernandez Kath ◽  
Ledemar Carlos Vahl ◽  
Franco Ajmone-Marsan

AbstractMetal-contaminated mining soils pose serious environmental and health risks if not properly managed, especially in mountainous areas, which are more susceptible to perturbation. Currently, climate change is leading to more frequent and intense rain events, which cause flooding episodes, thereby altering soil redox equilibria and contaminants stability. We evaluated the potential release of Zn and Cd (two of the most common inorganic contaminants) and the factors regulating their solubility and speciation in two heavily contaminated soils representative of a Zn-mining area. The soils were flooded under aerobic (for 24 h) and anaerobic (for 62 days) conditions using mesocosm experiments, sequential extractions, and geochemical modelling. Leaching trials under aerobic conditions showed a high release of Zn and Cd (10 times the legislative limits), with metals possibly migrating via water infiltration or runoff. Under anaerobic conditions Zn and Cd were initially released. Then, solution concentrations decreased gradually (Zn) or sharply (Cd) until the end of the experiment. Sequential extractions and multisurface modelling indicated that both metals precipitated mainly as carbonates. This was confirmed by a geochemical multisurface modelling, which also predicted the formation of sulphides after 60 days in one soil. The model calculated metals to be preferentially complexed by organic matter and well predicted the observed soil solution concentrations. The results showed that during flooding episodes contaminants could be promptly transferred to other environmental compartments. The use of multisurface modelling coupled with laboratory experiments provided useful indications on the potential release and speciation in case of anoxic conditions.

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Laura Ávila-Dávila ◽  
Manuel Soler-Méndez ◽  
Carlos Francisco Bautista-Capetillo ◽  
Julián González-Trinidad ◽  
Hugo Enrique Júnez-Ferreira ◽  
...  

Infiltration estimation is made by tests such as concentric cylinders, which are prone to errors, such as the lateral movement under the ring. Several possibilities have been developed over the last decades to compensate these errors, which are based on physical, electronic, and mathematical principles. In this research, two approaches are proposed to measure the water infiltration rate in a silty loam soil by means of the mass values of a lysimeter weighing under rainfall conditions and different moisture contents. Based on the fact that with the lysimeter it is possible to determine acting soil flows very precisely, then with the help of mass conservation and assuming a downward vertical movement, 12 rain events were analyzed. In addition, it was possible to monitor the behavior of soil moisture and to establish the content at field capacity from the values of the weighing lysimeter, from which both approach are based. The infiltration rate of these events showed a variable rate at the beginning of the rainfall until reaching a maximum, to descend to a stable or basic rate. This basic infiltration rate was 1.49 ± 0.36 mm/h, and this is because soils with fine textures have reported low infiltration capacity. Four empirical or semi-empirical models of infiltration were calibrated with the values obtained with our approaches, showing a better fit with the Horton’s model.


2018 ◽  
Vol 777 ◽  
pp. 256-261 ◽  
Author(s):  
André Ribeiro ◽  
André Mota ◽  
Margarida Soares ◽  
Carlos Castro ◽  
Jorge Araújo ◽  
...  

Electrokinetic remediation deserves particular attention in soil treatment due to its peculiar advantages, including the capability of treating fine and low permeability materials, and achieving consolidation, dewatering and removal of salts and inorganic contaminants like heavy metals in a single stage. In this study, the remediation of artificially lead (II) contaminated soil by electrokinetic process, coupled with Eggshell Inorganic Fraction Powder (EGGIF) permeable reactive barrier (PRB), was investigated. An electric field of 2 V cm-1was applied and was used an EGGIF/soil ratio of 30 g kg-1 of contaminated soil for the preparation of the permeable reactive barrier (PRB) in each test. It was obtained high removal rates of lead in both experiments, especially near the cathode. In the normalized distance to cathode of 0.2 it was achieved a maximum removal rate of lead (II) of 68, 78 and 83% in initial lead (II) concentration of 500 mg-1, 200 mg-1 and 100 mg-1, respectively. EGGIF (Eggshell Inorganic Fraction) proved that can be used as permeable reactive barrier (PRB) since in all the performed tests were achieved adsorptions yields higher than 90%.


2018 ◽  
Vol 3 (1) ◽  
pp. 414-426
Author(s):  
A.O. Adekiya ◽  
A.P. Oloruntoba ◽  
S.O. Ojeniyi ◽  
B.S. Ewulo

Abstract The study investigated the level of heavy metal contamination in plants {maize (Zea mays) and tomato (Solanum lycopersicum L.)} from thirty soil samples of three locations (Epe, Igun and Ijana) in the Ilesha gold mining area, Osun State, Nigeria. Total concentrations of As, Cd, Co, Cr, Cu, Ni, Pb and Zn were determined using atomic absorption spectrophotometry. Spatial variations were observed for all metals across the locations which was adduced to pH and the clay contents of the soils of each location. The results showed that heavy metals are more concentrated in the areas that are closer to the mining site and the concentrations in soil and plants (maize and tomato) decreased with increasing perpendicular distance from the mining site, indicating that the gold mine was the main sources of pollution. The mean concentrations of heavy metals in plants (tomato and maize) samples were considered to be contaminated as As, Cd and Pb respectively ranged from 0.6 - 2.04 mg kg-1, 0.8 - 5.2 mg kg-1, 0.8 - 3.04 mg kg-1 for tomato and respectively 0.60 - 2.00 mg kg-1, 1.50 - 4.60 mg kg-1 and 0.90 - 2.50 mg kg-1 for maize. These levels exceeded the maximum permissible limits set by FAO/WHO for vegetables. In conclusion, monitoring of crops for toxic heavy metals is essential for food safety in Nigeria.


2011 ◽  
Vol 414 ◽  
pp. 244-249
Author(s):  
Tao Zhu ◽  
Chang Sheng Jiang ◽  
Qing Ju Hao ◽  
Xiao Juan Huang

The manganese contents of soils and dominant plants from the manganese mining areas in Xiushan autonomous county of Chongqing were researched in this paper. The results showed that the Mn pollution of soil in the Mn mining tailings were very serious with high indexes (Igeo>5), and sewage irrigated soil was also contaminated by manganese metal. The uptake of Mn by dominant plants can be classified into three types according to the Mn contents in plant shoots and roots, (1) the accumulator which absorbs a large content of Mn by the roots and transports it to the shoots, (2) the root compartment which also absorbs a large content of Mn but mainly in the roots, and (3) the excluder which absorbs a smaller content of Mn than the accumulator. The edible parts of radishes and peppers growing in the Mn mining tailings and cropland were all seriously polluted by manganese and not safe for human health.


2016 ◽  
Vol 858 ◽  
pp. 104-110 ◽  
Author(s):  
Hao Liang Wu ◽  
Yan Jun Du ◽  
Yu You Yang ◽  
M.L. Wei

This paper presents a study on soils, from the Baoshan mining site, contaminated with heavy metals and stabilized by using a new phosphate-based binder. Unconfined compression test, sequential extraction procedure, X-ray diffraction and scanning electron microscopic procedures are carried out. This study aims to explore the effects of binder type, binder content and curing time of solidified contaminated soils on leaching and strength properties of the soils contaminated with heavy metals in the mining area. The results showed that as the curing time is increased from 0 d to 28 d, the new phosphate-based binder stabilized contaminated soil underwent several changes: 1) improved the strength and 2) decreased the exchangeable Zn and Pb and increased the residual contents.


2010 ◽  
Vol 217 (1-4) ◽  
pp. 333-346 ◽  
Author(s):  
Thomas Lambrechts ◽  
Eléonore Couder ◽  
M. Pilar Bernal ◽  
Ángel Faz ◽  
Anne Iserentant ◽  
...  

2021 ◽  
Author(s):  
Sabina Rossini-Oliva ◽  
Erika S. Santos ◽  
Maria Manuela Abreu

<p>In many countries is quite common that abandoned mines are close to agricultural areas and might be used for plant food cultivation or animal grazing. However, soils adjacent to mining areas and/or developed on mine wastes can be a source of potentially toxic elements (PTE) for plants. This might be a potentially risk for human and animal health needing to be monitored before taking a decision.</p><p>Ferragudo is an abandoned Fe–Mn mine located in SW of Portugal (Beja district) considered with intermediate level of environmental hazard impact due to small volumes of mine wastes with relatively low total concentrations of PTE, except for Mn. In this area holm oak woodland was implemented and soils are usually used for grassland. Animals such as cow, sheep and goat graze in this mining area. Chemical characterization of soil-plant system and potential human health risks of the plants associated with soil contamination were assessed. Samples of oak and grass (total n=8 each) were collected (spring 2017) and composite soil samples around plants, up to 10 cm depth were also collected. Soil properties were analyzed and concentrations of macro and micronutrients in soils and plants (shoots) were determined.</p><p>No statistical differences were observed between soils around grass and oak for all the studied parameters. Soils had a pH close to neutral and a good fertility. The mean total content in soils was 86.12 and 88.36 g Mn/kg, and 47.58 and 48.45 g Fe/kg around grass and oak, respectively. These values are higher than the average concentrations in non-contaminated soils of the region (0.74 g Mn/kg and 36.83 g Fe/kg). The Mn and Fe concentration in the soils available fraction (Rhizo method) was lower compared to total (397–441 mg Mn/kg and 18–11 mg Fe/kg in oak and grass, respectively). The concentration in the available fraction of other potentially toxic elements such as Cu and Zn was very low. Although the soils had high concentrations of Mn and Fe, the plant cover is significant and soils are totally colonized by herbaceous plants. Studied species showed a different accumulation pattern for the studied elements except for Cu. Quercus ilex showed concentrations of Fe in leaves (mean 158 mg/kg) lower than in grasses (mean 272 mg Fe/kg) while the opposite pattern was observed for Mn (mean 1363 mg/kg for oak and 353 mg/kg for grasses). Manganese concentrations in oak leaves were much greater than the normal range for mature leaf tissues but non-toxic for cattle and other domestic animals. The Fe concentration in the aerial part of both plants was much lower than the maximum tolerable value for cattle, sheep and poultry and also lower than the range considered normal for plants. Copper and Zn concentration in oak and grass was below the normal values for plants and lower than toxic levels for cattle. The concentration of Mn and Fe in the aerial parts of the studied plant species did not reach toxic levels for animal graze, indicating that these soils can be used for pasture.</p>


Author(s):  
Josepha D. Celes ◽  
Paul W. Mayne

In situ plasma magmavication is a powerful and expedient technique for melting soil that subsequently cools to form a glassy igneous rock. A nontransferred arc plasma torch provides temperatures exceeding 4000°C that can be positioned within boreholes as a means of ground improvement or for environmental restoration of contaminated soils. The process is similar to in situ vitrification by embedded graphite electrodes, yet the nontransferred arc is a considerably more efficient process. The artificial rock can be left in place or, alternatively, may be exhumed and stored. The effectiveness of plasma remediation on uncontaminated and contaminated kaolin was investigated through a preliminary series of laboratory chamber tests with small dosages of chemical, biological, and nuclear surrogates. It is believed that the process pyrolizes organic contaminants, while locking the inorganic contaminants within the glass matrix. Measurements in compressive strength, stiffness, porosity, and mass density verified the transformation of soil to rock with improved material characteristics.


Sign in / Sign up

Export Citation Format

Share Document