Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production

2009 ◽  
Vol 83 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Esther Imperlini ◽  
Carmelina Bianco ◽  
Enza Lonardo ◽  
Serena Camerini ◽  
Michele Cermola ◽  
...  
2010 ◽  
Vol 76 (14) ◽  
pp. 4626-4632 ◽  
Author(s):  
Carmen Bianco ◽  
Roberto Defez

ABSTRACT Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability compared to the wild-type 1021 strain. Here, we present data showing that RD64 is also highly effective in mobilizing P from insoluble sources, such as phosphate rock (PR). Under P-limiting conditions, the higher level of P-mobilizing activity of RD64 than of the 1021 wild-type strain is connected with the upregulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity, and the increased secretion into the growth medium of malic, succinic, and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released larger amounts of another P-solubilizing organic acid, 2-hydroxyglutaric acid, than plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited higher levels of dry-weight production than Mt-1021 plants. Here, we also report that P-starved Mt-RD64 plants show significant increases in both shoot and root fresh weights when compared to P-starved Mt-1021 plants. We discuss how, in a Rhizobium-legume model system, a balanced interplay of different factors linked to bacterial IAA overproduction rather than IAA production per se stimulates plant growth under stressful environmental conditions and, in particular, under P starvation.


2001 ◽  
Vol 14 (7) ◽  
pp. 887-894 ◽  
Author(s):  
Boglárka Oláh ◽  
Erno Kiss ◽  
Zoltán Györgypál ◽  
Judit Borzi ◽  
Gyöngyi Cinege ◽  
...  

In specific plant organs, namely the root nodules of alfalfa, fixed nitrogen (ammonia) produced by the symbiotic partner Sinorhizobium meliloti supports the growth of the host plant in nitrogen-depleted environment. Here, we report that a derivative of S. meliloti carrying a mutation in the chromosomal ntrR gene induced nodules with enhanced nitrogen fixation capacity, resulting in an increased dry weight and nitrogen content of alfalfa. The efficient nitrogen fixation is a result of the higher expression level of the nifH gene, encoding one of the subunits of the nitrogenase enzyme, and nifA, the transcriptional regulator of the nif operon. The ntrR gene, controlled negatively by its own product and positively by the symbiotic regulator syrM, is expressed in the same zone of nodules as the nif genes. As a result of the nitrogen-tolerant phenotype of the strain, the beneficial effect of the mutation on efficiency is not abolished in the presence of the exogenous nitrogen source. The ntrR mutant is highly competitive in nodule occupancy compared with the wild-type strain. Sequence analysis of the mutant region revealed a new cluster of genes, termed the “ntrPR operon,” which is highly homologous to a group of vap-related genes of various pathogenic bacteria that are presumably implicated in bacterium-host interactions. On the basis of its favorable properties, the strain is a good candidate for future agricultural utilization.


2019 ◽  
Vol 136 ◽  
pp. 07002
Author(s):  
Le Liang ◽  
Wanjia Tang ◽  
Xuemei Peng ◽  
Jing Lu ◽  
Han Liu ◽  
...  

Indole-3-acetic acid (IAA) plays crucial roles in plant growth and stress tolerance. In present study, the effects of spraying different concentrations (0, 25, 50, 100 and 200 μmol/L) of IAA on the growth and cadmium (Cd) accumulation in lettuce (Lactuca sativa) were investigated. The lettuce exposed to Cd exhibited a substantial decline in growth, and the Cd content of them significantly increased. Spraying exogenous IAA resulted in alleviating the inhibitory of Cd toxicity to lettuce. The dry weight in shoots of lettuce increased by spraying with IAA compared with the Cd treatment alone, but the dry weight of roots had no significantly differences. Although exogenous IAA increased the root Cd content, it significantly reduced shoot Cd content, indicating its role in Cd transport. Therefore, spraying IAA effectively alleviated Cd toxicity and reduced Cd uptake in the edible parts of lettuce, and the 100 μmol/L IAA was the optimal dose.


2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Michael J. Mitsch ◽  
George C. diCenzo ◽  
Alison Cowie ◽  
Turlough M. Finan

ABSTRACTSymbiotic nitrogen fixation (SNF) is an energetically expensive process performed by bacteria during endosymbiotic relationships with plants. The bacteria require the plant to provide a carbon source for the generation of reductant to power SNF. While C4-dicarboxylates (succinate, fumarate, and malate) appear to be the primary, if not sole, carbon source provided to the bacteria, the contribution of each C4-dicarboxylate is not known. We address this issue using genetic and systems-level analyses. Expression of a malate-specific transporter (MaeP) inSinorhizobium melilotiRm1021dctmutants unable to transport C4-dicarboxylates resulted in malate import rates of up to 30% that of the wild type. This was sufficient to support SNF withMedicago sativa, with acetylene reduction rates of up to 50% those of plants inoculated with wild-typeS. meliloti.Rhizobium leguminosarumbv. viciae 3841dctmutants unable to transport C4-dicarboxylates but expressing themaePtransporter had strong symbiotic properties, withPisum sativumplants inoculated with these strains appearing similar to plants inoculated with wild-typeR. leguminosarum. This was despite malate transport rates by the mutant bacteroids being 10% those of the wild type. An RNA-sequencing analysis of the combinedP. sativum-R. leguminosarumnodule transcriptome was performed to identify systems-level adaptations in response to the inability of the bacteria to import succinate or fumarate. Few transcriptional changes, with no obvious pattern, were detected. Overall, these data illustrated that succinate and fumarate are not essential for SNF and that, at least in specific symbioses,l-malate is likely the primary C4-dicarboxylate provided to the bacterium.IMPORTANCESymbiotic nitrogen fixation (SNF) is an economically and ecologically important biological process that allows plants to grow in nitrogen-poor soils without the need to apply nitrogen-based fertilizers. Much research has been dedicated to this topic to understand this process and to eventually manipulate it for agricultural gains. The work presented in this article provides new insights into the metabolic integration of the plant and bacterial partners. It is shown that malate is the only carbon source that needs to be available to the bacterium to support SNF and that, at least in some symbioses, malate, and not other C4-dicarboxylates, is likely the primary carbon provided to the bacterium. This work extends our knowledge of the minimal metabolic capabilities the bacterium requires to successfully perform SNF and may be useful in further studies aiming to optimize this process through synthetic biology approaches. The work describes an engineering approach to investigate a metabolic process that occurs between a eukaryotic host and its prokaryotic endosymbiont.


2020 ◽  
Vol 287 (1934) ◽  
pp. 20201493
Author(s):  
Gaurav Pandharikar ◽  
Jean-Luc Gatti ◽  
Jean-Christophe Simon ◽  
Pierre Frendo ◽  
Marylène Poirié

Legumes can meet their nitrogen requirements through root nodule symbiosis, which could also trigger plant systemic resistance against pests. The pea aphid Acyrthosiphon pisum , a legume pest, can harbour different facultative symbionts (FS) influencing various traits of their hosts. It is therefore worth determining if and how the symbionts of the plant and the aphid modulate their interaction. We used different pea aphid lines without FS or with a single one ( Hamiltonella defensa , Regiella insecticola, Serratia symbiotica ) to infest Medicago truncatula plants inoculated with Sinorhizobium meliloti (symbiotic nitrogen fixation, SNF) or supplemented with nitrate (non-inoculated, NI). The growth of SNF and NI plants was reduced by aphid infestation, while aphid weight (but not survival) was lowered on SNF compared to NI plants. Aphids strongly affected the plant nitrogen fixation depending on their symbiotic status, suggesting indirect relationships between aphid- and plant-associated microbes. Finally, all aphid lines triggered expression of Pathogenesis-Related Protein 1 ( PR1 ) and Proteinase Inhibitor (PI) , respective markers for salicylic and jasmonic pathways, in SNF plants, compared to only PR1 in NI plants. We demonstrate that the plant symbiotic status influences plant–aphid interactions while that of the aphid can modulate the amplitude of the plant's defence response.


1977 ◽  
Vol 57 (2) ◽  
pp. 433-439 ◽  
Author(s):  
L. M. BORDELEAU ◽  
H. ANTOUN ◽  
R. A. LACHANCE

Symbiotic nitrogen fixation with 49 isolates of Rhizobium meliloti was studied under controlled environment with alfalfa cv. Saranac. It was shown that plant yield in dry weight can be used as an indirect measurement of nitrogen fixation, and as a criterion for selecting efficient strains of R. meliloti. Statistical study on yields of three cuttings has established that the second cutting gives the most necessary information to correctly evaluate the symbiotic efficiency of the isolates. Six very efficient strains were selected.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e31287 ◽  
Author(s):  
Hansheng Zhao ◽  
Mao Li ◽  
Kechi Fang ◽  
Wenfeng Chen ◽  
Jing Wang

2007 ◽  
Vol 189 (24) ◽  
pp. 9050-9056 ◽  
Author(s):  
Chunxia Wang ◽  
Xiaoyan Sheng ◽  
Raymie C. Equi ◽  
Maria A. Trainer ◽  
Trevor C. Charles ◽  
...  

ABSTRACT Sinorhizobium meliloti cells store excess carbon as intracellular poly-3-hydroxybutyrate (PHB) granules that assist survival under fluctuating nutritional conditions. PHB granule-associated proteins (phasins) are proposed to regulate PHB synthesis and granule formation. Although the enzymology and genetics of PHB metabolism in S. meliloti have been well characterized, phasins have not yet been described for this organism. Comparison of the protein profiles of the wild type and a PHB synthesis mutant revealed two major proteins absent from the mutant. These were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as being encoded by the SMc00777 (phaP1) and SMc02111 (phaP2) genes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins associated with PHB granules followed by MALDI-TOF confirmed that PhaP1 and PhaP2 were the two major phasins. Double mutants were defective in PHB production, while single mutants still produced PHB, and unlike PHB synthesis mutants that have reduced exopolysaccharide, the double mutants had higher exopolysaccharide levels. Medicago truncatula plants inoculated with the double mutant exhibited reduced shoot dry weight (SDW), although there was no corresponding reduction in nitrogen fixation activity. Whether the phasins are involved in a metabolic regulatory response or whether the reduced SDW is due to a reduction in assimilation of fixed nitrogen rather than a reduction in nitrogen fixation activity remains to be established.


2005 ◽  
Vol 45 (3) ◽  
pp. 151 ◽  
Author(s):  
A. McInnes ◽  
P. Holford ◽  
J. E. Thies

The presence of dry and mucoid colonies in cultures of rhizobial strains used in the production of commercial Australian inoculants is of concern for quality assurance because of the possibility of altered capacity for nodulation and nitrogen fixation by the different colony types. In this study, single colony isolates obtained from dry and mucoid colonies present in commercial cultures of Sinorhizobium meliloti were investigated to identify stability in culture, genetic identity and changes in exopolysaccharide (EPS) production, nodulation and nitrogen fixation. The 2 strains studied were WSM688 and WSM826 (Australian inoculant strains for annual and perennial medics, respectively), both of which produced only mucoid colonies on agar media when originally isolated from nodules. Dry and mucoid single colony isolates from the ‘mother cultures’ of the 2 strains exhibited stable colony phenotypes during successive subculturing in our laboratory and were shown to be most closely related to S. meliloti using 16S rRNA partial sequencing. All isolates produced at least 1 of 3 exopolysaccharides (succinoglycan, EPS II and K antigen) that are required for successful nodulation of Medicago species by S. meliloti strains, as indicated by nodulation of host legumes. Strain WSM826 isolates probably produce succinoglycan, as shown by similarity to the succinoglycan-producing strain Rm1021 in a calcofluor binding assay. In contrast to published work, there was no evidence that loss of mucoidy in dry colony isolates of either strain was associated with the presence of an insertion sequence element in the expR gene that inhibits EPS II production. For strain WSM688, dry and mucoid isolates were identical by PCR fingerprinting and showed a similar capacity to nodulate and fix nitrogen with the target host legume M. truncatula in glasshouse tests. In contrast, strain WSM826 mucoid isolates produced PCR fingerprints that were different from each other and from the WSM826 dry colony isolates. Dry and mucoid colonies may have arisen from substantial genetic change or through contamination of cultures by other S. meliloti strains. One WSM826 mucoid isolate (826-3) produced significantly lower shoot dry weight when inoculated onto both the target host M. sativa and non-target host M. truncatula, even though the capacity to nodulate both hosts was retained. This suggests that this isolate was affected in its nitrogen fixation capacity. Further research is required to identify the origin and extent of colony variation in commercial S. meliloti cultures.


Sign in / Sign up

Export Citation Format

Share Document