Transcriptome analysis of wild-type and afsS deletion mutant strains identifies synergistic transcriptional regulator of afsS for a high antibiotic-producing strain of Streptomyces coelicolor A3(2)

2018 ◽  
Vol 102 (7) ◽  
pp. 3243-3253 ◽  
Author(s):  
Min Woo Kim ◽  
Bo-Rahm Lee ◽  
SungYong You ◽  
Eun-Jung Kim ◽  
Ji-Nu Kim ◽  
...  
2021 ◽  
Vol 22 (14) ◽  
pp. 7565
Author(s):  
Kyungho Woo ◽  
Dong Ho Kim ◽  
Man Hwan Oh ◽  
Ho Sung Park ◽  
Chul Hee Choi

Quorum sensing of Acinetobacter nosocomialis for cell-to-cell communication produces N-3-hydroxy dodecanoyl-DL-homoserine lactone (OH-dDHL) by an AnoR/I two-component system. However, OH-dDHL-driven apoptotic mechanisms in hosts have not been clearly defined. Here, we investigated the induction of apoptosis signaling pathways in bone marrow-derived macrophages treated with synthetic OH-dDHL. Moreover, the quorum-sensing system for virulence regulation was evaluated in vivo using wild-type and anoI-deletion mutant strains. OH-dDHL decreased the viability of macrophage and epithelial cells in dose- and time-dependent manners. OH-dDHL induced Ca2+ efflux and caspase-12 activation by ER stress transmembrane protein (IRE1 and ATF6a p50) aggregation and induced mitochondrial dysfunction through reactive oxygen species (ROS) production, which caused cytochrome c to leak. Pretreatment with a pan-caspase inhibitor reduced caspase-3, -8, and -9, which were activated by OH-dDHL. Pro-inflammatory cytokine and paraoxonase-2 (PON2) gene expression were increased by OH-dDHL. We showed that the anoI-deletion mutant strains have less intracellular invasion compared to the wild-type strain, and their virulence, such as colonization and dissemination, was decreased in vivo. Consequently, these findings revealed that OH-dDHL, as a virulence factor, contributes to bacterial infection and survival as well as the modification of host responses in the early stages of infection.


2009 ◽  
Vol 78 (1) ◽  
pp. 364-371 ◽  
Author(s):  
Ida M. Lister ◽  
Joan Mecsas ◽  
Stuart B. Levy

ABSTRACT MarA, an AraC/XylS transcriptional regulator in Escherichia coli, affects drug susceptibility and virulence. Two MarA-like proteins have been found in Yersinia pestis: MarA47 and MarA48. Deletion or overexpression of these proteins in the attenuated KIM 1001 Δpgm strain led to a change in multidrug susceptibility (including susceptibility to clinically relevant drugs). Additionally, lung colonization by the marA47 or marA48 deletion mutant was decreased about 10-fold in a pneumonic plague mouse model. Complementation of the deletions by replacing the deleted genes on the chromosome restored wild-type characteristics. These findings show that two MarA homologs in Y. pestis affect antibiotic susceptibility and virulence.


Microbiology ◽  
2011 ◽  
Vol 157 (11) ◽  
pp. 3014-3023 ◽  
Author(s):  
Alberto Hernandez-Eligio ◽  
Mildred Castellanos ◽  
Soledad Moreno ◽  
Guadalupe Espín

We previously showed that in Azotobacter vinelandii, accumulation of polyhydroxybutyrate (PHB) occurs mainly during the stationary phase, and that a mutation in phbR, encoding a transcriptional regulator of the AraC family, reduces PHB accumulation. In this study, we characterized the roles of PhbR and RpoS, a central regulator during stationary phase in bacteria, in the regulation of expression of the PHB biosynthetic operon phbBAC and phbR. We showed that inactivation of rpoS reduced PHB accumulation, similar to the phbR mutation, and inactivation of both rpoS and phbR resulted in an inability to produce PHB. We carried out expression studies with the wild-type, and the rpoS, phbR and double rpoS-phbR mutant strains, using quantitative RT-PCR, as well as phbB : : gusA and phbR : : gusA gene fusions. These studies showed that both PhbR and RpoS act as activators of phbB and phbR, and revealed a role for PhbR as an autoactivator. We also demonstrated that PhbR binds specifically to two almost identical 18 bp sites, TGTCACCAA-N4-CACTA and TGTCACCAA-N4-CAGTA, present in the phbB promoter region. The activation of phbB and phbR transcription by RpoS reported here is in agreement with the observation that accumulation of PHB in A. vinelandii occurs mainly during the stationary phase.


2006 ◽  
Vol 5 (10) ◽  
pp. 1688-1704 ◽  
Author(s):  
Iran Malavazi ◽  
Marcela Savoldi ◽  
Sônia Marli Zingaretti Di Mauro ◽  
Carlos Frederico Martins Menck ◽  
Steven D. Harris ◽  
...  

ABSTRACT We have used an Aspergillus nidulans macroarray carrying sequences of 2,787 genes from this fungus to monitor gene expression of both wild-type and uvsB ATR (the homologue of the ATR gene) deletion mutant strains in a time course exposure to camptothecin (CPT). The results revealed a total of 1,512 and 1,700 genes in the wild-type and uvsB ATR deletion mutant strains that displayed a statistically significant difference at at least one experimental time point. We characterized six genes that have increased mRNA expression in the presence of CPT in the wild-type strain relative to the uvsB ATR mutant strain: fhdA (encoding a forkhead-associated domain protein), tprA (encoding a hypothetical protein that contains a tetratrico peptide repeat), mshA (encoding a MutS homologue involved in mismatch repair), phbA (encoding a prohibitin homologue), uvsC RAD51 (the homologue of the RAD51 gene), and cshA (encoding a homologue of the excision repair protein ERCC-6 [Cockayne's syndrome protein]). The induced transcript levels of these genes in the presence of CPT require uvsB ATR. These genes were deleted, and surprisingly, only the ΔuvsC mutant strain was sensitive to CPT; however, the others displayed sensitivity to a range of DNA-damaging and oxidative stress agents. These results indicate that the selected genes when inactivated display very complex and heterogeneous sensitivity behavior during growth in the presence of agents that directly or indirectly cause DNA damage. Moreover, with the exception of UvsC, deletion of each of these genes partially suppressed the sensitivity of the ΔuvsB strain to menadione and paraquat. Our results provide the first insight into the overall complexity of the response to DNA damage in filamentous fungi and suggest that multiple pathways may act in parallel to mediate DNA repair.


1990 ◽  
Vol 18 (23) ◽  
pp. 7099-7107 ◽  
Author(s):  
Edward W. Scott ◽  
Heather E. Allison ◽  
Henry V. Baker

2012 ◽  
Vol 78 (19) ◽  
pp. 6875-6882 ◽  
Author(s):  
Annukka Markkula ◽  
Miia Lindström ◽  
Per Johansson ◽  
Johanna Björkroth ◽  
Hannu Korkeala

ABSTRACTTo examine the role of the four putative DEAD-box RNA helicase genes ofListeria monocytogenesEGD-e in stress tolerance, the growth of the Δlmo0866, Δlmo1246, Δlmo1450, and Δlmo1722deletion mutant strains at 42.5°C, at pH 5.6 or pH 9.4, in 6% NaCl, in 3.5% ethanol, and in 5 mM H2O2was studied. Restricted growth of the Δlmo0866deletion mutant strain in 3.5% ethanol suggests that Lmo0866 contributes to ethanol stress tolerance ofL. monocytogenesEGD-e. The Δlmo1450mutant strain showed negligible growth at 42.5°C, at pH 9.4, and in 5 mM H2O2and a lower maximum growth temperature than the wild-type EGD-e, suggesting that Lmo1450 is involved in the tolerance ofL. monocytogenesEGD-e to heat, alkali, and oxidative stresses. The altered stress tolerance of the Δlmo0866and Δlmo1450deletion mutant strains did not correlate with changes in relative expression levels oflmo0866andlmo1450genes under corresponding stresses, suggesting that Lmo0866- and Lmo1450-dependent tolerance to heat, alkali, ethanol, or oxidative stress is not regulated at the transcriptional level. Growth of the Δlmo1246and Δlmo1722deletion mutant strains did not differ from that of the wild-type EGD-e under any of the conditions tested, suggesting that Lmo1246 and Lmo1722 have no roles in the growth ofL. monocytogenesEGD-e under heat, pH, osmotic, ethanol, or oxidative stress. This study shows that the putative DEAD-box RNA helicase geneslmo0866andlmo1450play important roles in tolerance ofL. monocytogenesEGD-e to ethanol, heat, alkali, and oxidative stresses.


2011 ◽  
pp. 245-251 ◽  
Author(s):  
S. Sarowar ◽  
D.P. Wang ◽  
Y.F. Zhao ◽  
R.E. Guerra ◽  
D.M. Zheng ◽  
...  

2013 ◽  
Vol 79 (19) ◽  
pp. 5907-5917 ◽  
Author(s):  
Pierre Le Maréchal ◽  
Paulette Decottignies ◽  
Christophe H. Marchand ◽  
Jeril Degrouard ◽  
Danièle Jaillard ◽  
...  

ABSTRACTStreptomyces lividansTK24 is a strain that naturally produces antibiotics at low levels, but dramatic overproduction of antibiotics occurs upon interruption of theppkgene. However, the role of the Ppk enzyme in relation to the regulation of antibiotic biosynthesis remains poorly understood. In order to gain a better understanding of the phenotype of theppkmutant, the proteomes of the wild-type (wt) andppkmutant strains, grown for 96 h on R2YE medium limited in phosphate, were analyzed. Intracellular proteins were separated on two-dimensional (2D) gels, spots were quantified, and those showing a 3-fold variation or more were identified by mass spectrometry. The expression of 12 proteins increased and that of 29 decreased in theppkmutant strain. Our results suggested that storage lipid degradation rather than hexose catabolism was taking place in the mutant. In order to validate this hypothesis, the triacylglycerol contents of the wt andppkmutant strains ofS. lividansas well as that ofStreptomyces coelicolorM145, a strain that produces antibiotics at high levels and is closely related toS. lividans, were assessed using electron microscopy and thin-layer chromatography. These studies highlighted the large difference in triacylglycerol contents of the three strains and confirmed the hypothetical link between storage lipid metabolism and antibiotic biosynthesis inStreptomyces.


Sign in / Sign up

Export Citation Format

Share Document