Crustal seismic velocity in the Marche region (Central Italy): computation of a minimum 1-D model with seismic station corrections

2008 ◽  
Vol 56 (6) ◽  
pp. 1115-1121 ◽  
Author(s):  
L. Scarfì ◽  
S. Imposa ◽  
R. Raffaele ◽  
A. Scaltrito
2021 ◽  
Author(s):  
Olga Usoltseva ◽  
Vladimir Ovtchinnikov

<p><span>Study of the contact zone between the inner and outer core represents considerable interest for understanding of properties, structures and dynamic of the Earth's core. One of </span><span>the </span><span>sources of </span><span>the </span><span>data about the processes proceeding in the top part of the inner core is the seismic wave PKIIKP once reflected from an undersize inner core boundary. Amplitudes of these waves are sensitive to the shear velocity in the top part of the inner core and are small. Therefore their identification at a single seismic station is not reliable without application of additional methods of analysis. </span><span>Significant in this regard is the discussion about the source (in inner core or in mantle) of anomalous arrivals<!-- Это можно удалить --> detected at the TAM station in North Africa [1,2] in the time range of PKIIKP phase.</span></p><p><span>To estimate influence of model parameters (S and P seismic velocity) on the characteristics of PKIIKP wave (amplitude and travel time) we calculated sensitivity kernels for upper mantle and inner core for dominant period 1.2 s, azimuth step 0.2 degrees and radius step 20 km by using DSM Kernel Suite algorithm. It was revealed that PKIIKP amplitude is more sensitivities to mantle heterogeneities than to inner core ones. </span><span>For reducing the effects of the overlying structures we suppose to use </span>а <span>joint analysis PKIIKP and pPKIIKP waves. </span><span>With this approach, an incorrect i</span><span>dentification</span><span> of the PKIIKP wave is most likely excluded. </span><span>We<!-- Было бы хорошо привести пример --> demonstrate the effectiveness of the approach on the example of processing the seismogram of the 11.02.2015 earthquake re</span>с<span>o</span><span>rded at the GZH station in China at a distance of 179.4 degrees.</span></p><p><span>1. Wang W., Song X. Analyses of anomalous amplitudes of antipodal PKIIKP waves</span><span>,</span><span> E<!-- Удаляется вместе с текстом, выделенным выше Зеленым цветом. -->aPP. 2019. V. 3. P. 212-217. doi: 10.26464/epp2019023</span></p><p><span>2. Tsuboi S., Butler R. Inner core differential rotation inferred from antipodal seismic observations</span><span>,</span><span> PEPI</span><span>,</span><span> 2020. V.301. 106451. </span></p>


Redia ◽  
2021 ◽  
Vol 104 ◽  
pp. 209-215
Author(s):  
EMILIANO MORI ◽  
ANDREA VIVIANO ◽  
LEONARDO BRUSTENGA ◽  
FRANCESCO OLIVETTI ◽  
LUCA PEPPUCCI ◽  
...  

The presence of the Eurasian beaver Castor fiber L. has been recently confirmed with two separated populations in Tuscany (Central Italy) and probably represents the result of an unofficial release. In late spring and summer 2021, seven reliable records of Eurasian beaver have been collected in Umbria and other neighbouring regions, implying that the distribution of this large rodent is even wider than previously reported. In this short work, we updated the distribution of this protected species in Central Italy, by collecting and mapping all the confirmed occurrences. Beavers were proved to be present throughout the Tiber (Tevere) river basin in both provinces of Umbria, and another individual has been road-killed in the Marche region, near the border with Tuscany. Other single signs of presence occurred in Emilia Romagna and Latium. The only hair sample we were able to collect confirmed it as the Eurasian beaver species. No reliable evidence is available on the number of free-ranging beavers in Central Italy, and systematic monitoring is needed. Before any management and conservation action, further data are required concerning distribution range, potential origin, social perception, and the effects on the ecosystems.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Domenico Paludi ◽  
Giovanni Di Guardo ◽  
Alberto Olivastri ◽  
Antonio Zizzi ◽  
Corrado Rubini ◽  
...  

The raw ham’s ripening process contributes to the development of numerous biochemical reactions, mainly affecting proteins and lipids and allowing to obtain an adequate texture and a characteristic flavor. This article reports the results of histologic investigations carried out on 5 different anatomic regions from raw hams manufactured in the Fermo Province, Marche Region, Central Italy. Raw ham specimens were collected at the 10 following time intervals throughout the ripening process: 1) “Time 0”, when ripening was started, 2) one month, 3) three months, 4) four months, 5) eight months, 6) nine months, 7) twelve months, 8) eighteen months, 9) twentythree months and 10) twenty-eight months after the ripening process began, respectively. Different microscopic findings of variable extension and degree were observed, with the vast majority of them being interpreted as dehydration- and proteolysisrelated modifications. In conclusion, morpho- histological investigations may represent a valuable aid in raw ham’s ripening analysis.


2020 ◽  
pp. 1-10
Author(s):  
Piero Farabollini ◽  
Pierfederico De Pari ◽  
Marco Emanuele Discenza ◽  
Mariacarmela Minnillo ◽  
Cristiano Carabella ◽  
...  

Geology ◽  
2020 ◽  
Vol 48 (9) ◽  
pp. 924-928 ◽  
Author(s):  
C. Chiarabba ◽  
P. De Gori ◽  
M. Segou ◽  
M. Cattaneo

Abstract Earthquakes occur as the result of long-term strain accumulation on active faults and complex transient triggering mechanisms. Although laboratory experiments show accelerating deformation patterns before failure conditions are met, imaging similar preparatory phases in nature remains difficult because it requires dense monitoring in advance. The 2016 Amatrice-Visso-Norcia (central Italy) earthquake cascade, captured by an unprecedented seismic network, provided a unique testing ground to image the preparatory phase of a large event. The crustal volume of the Norcia incipient fault was densely illuminated by seismic rays from more than 13,000 earthquakes that occurred within the 3 mo before the main shock nucleation. We performed seismic tomography in distinct time windows that revealed the precursory changes of elastic wave speed, signaling (1) the final locked state of the fault, and (2) the rapid fault-stiffness alterations near the hypocenter just a few weeks before the event. The results are the first instance where short-lived, hard-to-catch crustal properties shed light on evolving earthquake cascades.


2003 ◽  
Vol 18 (2) ◽  
pp. 203-217 ◽  
Author(s):  
Luciano Telesca ◽  
Vincenzo Lapenna ◽  
Maria Macchiato
Keyword(s):  

2014 ◽  
Vol 6 (1) ◽  
pp. 559-598
Author(s):  
M. Dec ◽  
M. Malinowski ◽  
E. Perchuc

Abstract. In this article we present a new 1-D P wave seismic velocity model (called MP1-SUW) of the upper mantle structure beneath the western rim of the East European Craton (EEC) based on the analysis of the earthquakes recorded at the Suwałki (SUW) seismic station located in NE Poland which belongs to the Polish Seismological Network (PLSN). This analysis was carried out due to the fact that in the wavefield recorded at this station we observed a group of reflected waves after expected P410P at epicentral distances 2300–2800 km from SUW station. Although the existing global models represent the first arrivals, they do not represent the full wavefield with all reflected waves because they do not take into account the structural features occurring regionally such as 300 km discontinuity. We perform P wave traveltime analysis using 1-D forward ray-tracing modelling for the distances up to 3000 km. We analysed 249 natural seismic events that were divided into four azimuthal spans with epicentres in the western Mediterranean Sea region (WMSR), the Greece and Turkey region (GTR), the Caucasus region (CR) and the part of the North Atlantic Ridge near the January Mayen Island (JMR). Events from each group were sorted into four seismic sections respectively. The MP1-SUW model documents bottom of the asthenospheric low velocity zone (LVZ) at the depth of 220 km, 335 km discontinuity and the zone with the reduction of P wave velocity atop 410 km discontinuity which is depressed to 440 km depth. The nature of a regionally occurring 300 km boundary here we explained by tracing the ancient subduction regime related to the closure of the Iapetus Ocean, the Rheic Ocean and the Tornquist Sea.


2021 ◽  
Vol 13 (20) ◽  
pp. 11462
Author(s):  
Massimiliano Boccarossa ◽  
Martina Di Addario ◽  
Adele Folino ◽  
Fabio Tatàno

In the Marche Region (Central Italy), the residual municipal waste (RMW) is commonly processed in mechanical biological treatment (MBT) systems. In these systems, following a first mechanical selection, the undersize organic fraction from RMW (us-OFRMW) undergoes a partial aerobic biological treatment before being landfilled as a biostabilised fraction (bios-OFRMW) without dedicated energy or material recovery. Alternative us-OFRMW management scenarios have been elaborated for this region, at both present (reference year 2019) and future (reference year 2035) time bases. In the first scenario, the potential bioenergy recovery through anaerobic digestion (AD) from the us-OFRMW was evaluated. The second scenario aimed at evaluating the residual methane generation expected from the bios-OFRMW once landfilled, thus contributing also to the potential environmental impact connected with landfill gas (LFG) diffuse emissions from the regional landfills. The diversion to AD, at the present time, would allow a potential bioenergy recovery from the us-OFRMW equal to 4.35 MWel, while the alternative scenario involves greenhouse gas (GHG) emissions equal to 195 kg CO2 eq. per ton of deposited bios-OFRMW. In the future, the decreased amount of the us-OFRMW addressed to AD would still contribute with a potential bioenergy recovery of 3.47 MWel.


2020 ◽  
Vol 3 (2) ◽  
pp. 393-406
Author(s):  
Olivia Nesci ◽  
Laura Valentini

Abstract. We present a method to educate the public about landscapes that uses artistic works to broaden the audience, entice people to learn about landscapes in a personal and human context, and thus encourage them to preserve the natural heritage. To this end, we use narratives about a place, in plain language, accompanied by visual presentations, original poetry, and ancient music. Several studies encourage the use of art since it can help to synthesize and convey complex scientific information and create a celebratory and positive atmosphere. Evidence suggests that the arts can deeply engage people by focusing on emotions rather than relying only on comprehension, which is often emphasized in science communication. The multidisciplinary approach arouses an emotional and intellectual experience that enables a personal connection to the place. The work is part of a larger multidisciplinary project covering 20 sites in the Marche region (central Italy), which includes scientific information on geological–geomorphological genesis, trekking itineraries, poetry, ancient music, video, and cultural offerings. The project resulted in live multidisciplinary performances, a book, a DVD, and a website. To give a taste of how we work among the many amazing landscapes of the Marche region, we focus here on three sites from the north, the centre, and the south of the region, namely the sea cliff of San Bartolo, the flatiron of Mount Petrano, and the fault of Mount Vettore, chosen as examples for their different processes of genesis and evolution. In the long run, our goal is to promote a deeper understanding of landscapes by integrating their origin and physical aesthetic with their cultural and artistic heritage. In doing so, we intend to inspire people to have a new perception of geosites, starting from their physical beauty, building on scientific study and cultural history, and arriving at the knowledge of their social importance. So far, our direct experience with the public has been highly encouraging. The participation at our live shows demonstrated a great interest in geological history, a result that is relevant for the development of geotourism. The method demonstrates the potential to develop a strong personal involvement of visitors with the places, stimulating their curiosity to know how and why that place was formed, and, finally, the desire to visit and protect it.


2021 ◽  
Author(s):  
Rezkia Dewi Andajani ◽  
Takeshi Tsuji ◽  
Roel Snieder ◽  
Tatsunori Ikeda

Abstract Earth’s crust responds to perturbations from various environmental factors. To evaluate this response, seismic velocity changes offer an indirect diagnostic, especially where velocity can be monitored on an ongoing basis from ambient seismic noise. Investigating the connection between the seismic velocity changes and external perturbations could be useful for characterizing dynamic activities in the crust. The seismic velocity is known to be sensitive to variations in meteorological signals such as temperature, snow, and precipitation as well as changes in sea level. Among these perturbations, the impact of variations in sea level on velocity changes inferred from seismic interferometry of ambient noise is not well known. This study investigates the influence of the ocean in a 3-year record of ambient noise seismic velocity monitoring in the Chugoku and Shikoku regions of southwest Japan. First, we applied a bandpass filter to determine the optimal period band for discriminating among different influences on seismic velocity. Then, we applied a regression analysis between the proximity of seismic station pairs to the coast and the ocean influence, as indicated by the correlation of sea level to seismic velocity changes between pairs of stations. Our study suggests that for periods between 0.0036 to 0.01 cycle/day (100–274 days), the ocean’s influence on seismic velocity decreases with increasing distance of station pairs from the coast. The increasing sea level deforms the ocean floor, affecting the stress in the adjacent coast. The stress change induced by the ocean loading may extend at least dozens of kilometers from the coast. The correlation between sea level and inland seismic velocity changes are negative or positive. Although it is difficult to clearly interpret the correlation based on simple model, they could depend on the in situ local stress, orientation of dominant crack, and hydraulic conductivity. Our study shows that seismic monitoring may be useful for evaluating the perturbation in the crust associated with an external load.


Sign in / Sign up

Export Citation Format

Share Document