Weight-adapted ultra-low-dose pancreatic perfusion CT: radiation dose, image quality, and perfusion parameters

2019 ◽  
Vol 44 (6) ◽  
pp. 2196-2204 ◽  
Author(s):  
Ping Li ◽  
Wanling Deng ◽  
Huadan Xue ◽  
Kai Xu ◽  
Liang Zhu ◽  
...  
2019 ◽  
Vol 74 (8) ◽  
pp. 650.e13-650.e18
Author(s):  
Y. Asayama ◽  
A. Nishie ◽  
K. Ishigami ◽  
Y. Ushijima ◽  
D. Kakihara ◽  
...  

Pancreatology ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1406-1412
Author(s):  
Yoshihiro Konno ◽  
Toshitada Hiraka ◽  
Masafumi Kanoto ◽  
Toshimitsu Sato ◽  
Michihiko Tsunoda ◽  
...  

Author(s):  
Sultan Aldosari ◽  
Zhonghua Sun

Background: The aim of this study is to perform a systematic review of the feasibility and clinical application of double low-dose CT pulmonary angiography (CTPA) in the diagnosis of patients with suspected pulmonary embolism. Discussion: A total of 13 studies were found to meet selection criteria reporting both low radiation dose (70 or 80 kVp versus 100 or 120 kVp) and low contrast medium dose CTPA protocols. Lowdose CTPA resulted in radiation dose reduction from 29.6% to 87.5% in 12 studies (range: 0.4 to 23.5 mSv), while in one study, radiation dose was increased in the dual-energy CT group when compared to the standard 120 kVp group. CTPA with use of low contrast medium volume (range: 20 to 75 ml) was compared to standard CTPA (range: 50 to 101 ml) in 12 studies with reduction between 25 and 67%, while in the remaining study, low iodine concentration was used with 23% dose reduction achieved. Quantitative assessment of image quality (in terms of signal-to-noise ratio and contrast-to-noise ratio) showed that low-dose CTPA was associated with higher, lower and no change in image quality in 3, 3 and 6 studies, respectively when compared to the standard CTPA protocol. The subjective assessment indicated similar image quality in 11 studies between low-dose and standard CTPA groups, and improved image quality in 1 study with low-dose CTPA. Conclusion: This review shows that double low-dose CTPA is feasible in the diagnosis of pulmonary embolism with significant reductions in both radiation and contrast medium doses, without compromising diagnostic image quality.


2015 ◽  
Vol 204 (6) ◽  
pp. 1197-1202 ◽  
Author(s):  
Yookyung Kim ◽  
Yoon Kyung Kim ◽  
Bo Eun Lee ◽  
Seok Jeong Lee ◽  
Yon Ju Ryu ◽  
...  

2017 ◽  
Vol 45 (6) ◽  
pp. 2101-2109 ◽  
Author(s):  
Barbara K Frisch ◽  
Karin Slebocki ◽  
Kamal Mammadov ◽  
Michael Puesken ◽  
Ingrid Becker ◽  
...  

Objective To evaluate the use of ultra-low-dose computed tomography (ULDCT) for CT-guided lung biopsy versus standard-dose CT (SDCT). Methods CT-guided lung biopsies from 115 patients (50 ULDCT, 65 SDCT) were analyzed retrospectively. SDCT settings were 120 kVp with automatic mAs modulation. ULDCT settings were 80 kVp with fixed exposure (20 mAs). Two radiologists evaluated image quality (i.e., needle artifacts, lesion contouring, vessel recognition, visibility of interlobar fissures). Complications and histological results were also evaluated. Results ULDCT was considered feasible for all lung interventions, showing the same diagnostic accuracy as SDCT. Its mean total radiation dose (dose–length product) was significantly reduced to 34 mGy-cm (SDCT 426 mGy-cm). Image quality and complication rates ( P = 0.469) were consistent. Conclusions ULDCT for CT-guided lung biopsies appears safe and accurate, with a significantly reduced radiation dose. We therefore recommend routine clinical use of ULDCT for the benefit of patients and interventionalists.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Richard G. Kavanagh ◽  
John O’Grady ◽  
Brian W. Carey ◽  
Patrick D. McLaughlin ◽  
Siobhan B. O’Neill ◽  
...  

Magnetic resonance imaging (MRI) is the mainstay method for the radiological imaging of the small bowel in patients with inflammatory bowel disease without the use of ionizing radiation. There are circumstances where imaging using ionizing radiation is required, particularly in the acute setting. This usually takes the form of computed tomography (CT). There has been a significant increase in the utilization of computed tomography (CT) for patients with Crohn’s disease as patients are frequently diagnosed at a relatively young age and require repeated imaging. Between seven and eleven percent of patients with IBD are exposed to high cumulative effective radiation doses (CEDs) (>35–75 mSv), mostly patients with Crohn’s disease (Newnham E 2007, Levi Z 2009, Hou JK 2014, Estay C 2015). This is primarily due to the more widespread and repeated use of CT, which accounts for 77% of radiation dose exposure amongst patients with Crohn’s disease (Desmond et al., 2008). Reports of the projected cancer risks from the increasing CT use (Berrington et al., 2007) have led to increased patient awareness regarding the potential health risks from ionizing radiation (Coakley et al., 2011). Our responsibilities as physicians caring for these patients include education regarding radiation risk and, when an investigation that utilizes ionizing radiation is required, to keep radiation doses as low as reasonably achievable: the “ALARA” principle. Recent advances in CT technology have facilitated substantial radiation dose reductions in many clinical settings, and several studies have demonstrated significantly decreased radiation doses in Crohn’s disease patients while maintaining diagnostic image quality. However, there is a balance to be struck between reducing radiation exposure and maintaining satisfactory image quality; if radiation dose is reduced excessively, the resulting CT images can be of poor quality and may be nondiagnostic. In this paper, we summarize the available evidence related to imaging of Crohn’s disease, radiation exposure, and risk, and we report recent advances in low-dose CT technology that have particular relevance.


Author(s):  
Michael Esser ◽  
Sabine Hess ◽  
Matthias Teufel ◽  
Mareen Kraus ◽  
Sven Schneeweiß ◽  
...  

Purpose To analyze possible influencing factors on radiation exposure in pediatric chest CT using different approaches for radiation dose optimization and to determine major indicators for dose development. Materials and Methods In this retrospective study at a clinic with maximum care facilities including pediatric radiology, 1695 chest CT examinations in 768 patients (median age: 10 years; range: 2 days to 17.9 years) were analyzed. Volume CT dose indices, effective dose, size-specific dose estimate, automatic dose modulation (AEC), and high-pitch protocols (pitch ≥ 3.0) were evaluated by univariate analysis. The image quality of low-dose examinations was compared to higher dose protocols by non-inferiority testing. Results Median dose-specific values annually decreased by an average of 12 %. High-pitch mode (n = 414) resulted in lower dose parameters (p < 0.001). In unenhanced CT, AEC delivered higher dose values compared to scans with fixed parameters (p < 0.001). In contrast-enhanced CT, the use of AEC yielded a significantly lower radiation dose only in patients older than 16 years (p = 0.04). In the age group 6 to 15 years, the values were higher (p < 0.001). The diagnostic image quality of low-dose scans was non-inferior to high-dose scans (2.18 vs. 2.14). Conclusion Radiation dose of chest CT was reduced without loss of image quality in the last decade. High-pitch scanning was an independent factor in this context. Dose reduction by AEC was limited and only relevant for patients over 16 years. Key Points Citation Format


2020 ◽  
Vol 9 (1) ◽  
pp. 27-31
Author(s):  
Mahesh Gautam ◽  
Aziz Ullah ◽  
Manish Raj Pathak

Background: Standard dose computed tomography is standard imaging modality in diagnosis of urolithiasis. The introduction of low dose techniques results in decrease radiation dose without significant change in image quality. However, the image quality of low dose computed tomography is affected by skin fold thickness and subcutaneous abdominal adipose tissue. The aim of this study to evaluate stone location, size, and density using low dose computed tomography compared with standard dose computed tomography in obese population. Material and Methods: This non-randomized non-inferiority trial includes 120 patient having BMI≥25kg/m2 with acute ureteric colic. The low dose and standard dose computed tomography were performed accordingly. Effective radiation doses were calculated from dose-length product obtained from scan report using conversion factor of 0.015. The images were reconstructed using iterative reconstruction algorithm. Effective dose, number and size of stone, Hounsfield Unit value of stone and image quality was assessed. Results: Stones were located in 69 (57.5%) in right and 51 (42.5%) in left ureter. There was no statistical difference in mean diameter, number and density of stones in low dose as compared with standard dose. The radiation dose was significantly lower with low dose. (3.68 mSv) The delineation of the ureter, outline of the stones and image quality in low dose was overall sufficient for diagnosis. No images of low dose scan were subjectively rated as non-diagnostics. Conclusion: Low dose computed tomography with iterative reconstruction technique is as effective as standard dose in diagnosis of ureteric stones in obese patients with lower effective radiation dose.


Sign in / Sign up

Export Citation Format

Share Document