The Arctic Water Resource Vulnerability Index: An Integrated Assessment Tool for Community Resilience and Vulnerability with Respect to Freshwater

2008 ◽  
Vol 42 (3) ◽  
pp. 523-541 ◽  
Author(s):  
Lilian Alessa ◽  
Andrew Kliskey ◽  
Richard Lammers ◽  
Chris Arp ◽  
Dan White ◽  
...  
2019 ◽  
Vol 23 ◽  
pp. 19-31 ◽  
Author(s):  
Paula Williams ◽  
Andrew Kliskey ◽  
Molly McCarthy ◽  
Richard Lammers ◽  
Lilian Alessa ◽  
...  

2020 ◽  
Vol 6 (4) ◽  
pp. 437-462
Author(s):  
C. Spence ◽  
M. Norris ◽  
G. Bickerton ◽  
B.R. Bonsal ◽  
R. Brua ◽  
...  

This study developed and applied a framework for assessing the vulnerability of pan-Canadian water resources to permafrost thaw. The national-scale work addresses a key, but neglected, information gap, as previous research has focused on small scale physical processes and circumpolar trends. The framework was applied to develop the Canadian Water Resources Vulnerability Index to Permafrost Thaw (CWRVIPT) and map the index across the Canadian North. The CWRVIPT is a linearly additive index of permafrost, terrain, disturbance, and climatic conditions and stressors that influence water budgets and aquatic chemistry. Initial results imply water resources in the western Northwest Territories and Hudson Bay Lowlands are most vulnerable to permafrost thaw; however, water resources on Banks, Victoria and Baffin Islands are also relatively vulnerable. Although terrain and permafrost sub-indices are the largest component of the CWRVIPT across a wide swath from the Mackenzie River Delta to the Hudson Bay Lowlands, the climate sub-index is most important farther north over parts of the southern portion of the Arctic Archipelago. The index can be used to identify areas of water resource vulnerability on which to focus observation and research in the Canadian North.


Author(s):  
Andrey N. Sharov

Based on the study of the spatio-temporal aspects of the development of phytoplankton in the lakes of the North and North-West of the European territory of Russia (large lakes – Imandra, Onega and Chudsko-Pskovskoye and small lakes of the Arctic and Subarctic), the features of its structure and dynamics under the influence of natural and anthropogenic factors (eutrophication, heavy metal pollution, acidification, thermification). The species composition and quantitative characteristics of phytoplankton of large lakes of the North of Russia, small arctic lakes and lakes of subarctic regions are studied. It has been shown that diatoms predominate in arctic water bodies according to species diversity, and green and diatoms predominate in boreal ones. By biomass, diatoms dominate mainly in all cold-water lakes, with the exception of small arctic lakes, where golden algae lead. The features of the reorganization of phytoplankton in response to the action of anthropogenic factors are revealed. It is proved that in the northern water bodies the complex action of heavy metals and nutrients does not lead to inhibition of phytoplankton, and the effect of acidification in combination with heavy metals enhances the toxic effect of the latter. A feature of the response to acidification is an increase in the variability of the dynamics of the biomass of phytoplankton. It has been shown that in different types of lakes of East Antarctica under severe climate conditions under light and biogenic limitation, redistribution of autotrophic components in the formation of the biota of water bodies occurs: against the background of a decrease in the abundance and diversity of phytoplankton, the role of microphytobenthos and periphyton increases.


2018 ◽  
Vol 142 ◽  
pp. 94-106 ◽  
Author(s):  
Montserrat Roca-Martí ◽  
Viena Puigcorbé ◽  
Jana Friedrich ◽  
Michiel Rutgers van der Loeff ◽  
Benjamin Rabe ◽  
...  

2021 ◽  
Author(s):  
Richard G Dorrell ◽  
Alan Kuo ◽  
Zoltan Fussy ◽  
Elisabeth H Richardson ◽  
Asaf Salamov ◽  
...  

The Arctic Ocean is being impacted by warming temperatures, increasing freshwater and highly variable ice conditions. The microalgal communities underpinning Arctic marine food webs, once thought to be dominated by diatoms, include a phylogenetically diverse range of small algal species, whose biology remains poorly understood. Here, we present genome sequences of a cryptomonad, a haptophyte, a chrysophyte, and a pelagophyte, isolated from the Arctic water column and ice. Comparing protein family distributions and sequence similarity across a densely-sampled set of algal genomes and transcriptomes, we note striking convergences in the biology of distantly related small Arctic algae, compared to non-Arctic relatives; although this convergence is largely exclusive of Arctic diatoms. Using high-throughput phylogenetic approaches, incorporating environmental sequence data from Tara Oceans, we demonstrate that this convergence was partly explained by horizontal gene transfers (HGT) between Arctic species, in over at least 30 other discrete gene families, and most notably in ice-binding domains (IBD). These Arctic-specific genes have been repeatedly transferred between Arctic algae, and are independent of equivalent HGTs in the Antarctic Southern Ocean. Our data provide insights into the specialised Arctic marine microbiome, and underlines the role of geographically-limited HGT as a driver of environmental adaptation in eukaryotic algae.


2021 ◽  
Vol 9 ◽  
Author(s):  
Moein Mellat ◽  
Hannah Bailey ◽  
Kaisa-Riikka Mustonen ◽  
Hannu Marttila ◽  
Eric S. Klein ◽  
...  

Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ18O, δ2H, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ2H = 7.6⋅δ18O–1.8 (r2 = 0.96, p < 0.01). Mean amount-weighted δ18O, δ2H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ18O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recorded the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ18O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ18O values. Yet 32% of precipitation events, characterized by lower δ18O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system.


2019 ◽  
Vol 6 ◽  
Author(s):  
Kalle Olli ◽  
Elisabeth Halvorsen ◽  
Maria Vernet ◽  
Peter J. Lavrentyev ◽  
Gayantonia Franzè ◽  
...  

2017 ◽  
Vol 75 (7) ◽  
pp. 2342-2354 ◽  
Author(s):  
Johanna Myrseth Aarflot ◽  
Hein Rune Skjoldal ◽  
Padmini Dalpadado ◽  
Mette Skern-Mauritzen

Abstract Copepods from the genus Calanus are crucial prey for fish, seabirds and mammals in the Nordic and Barents Sea ecosystems. The objective of this study is to determine the contribution of Calanus species to the mesozooplankton biomass in the Barents Sea. We analyse an extensive dataset of Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus, collected at various research surveys over a 30-year period. Our results show that the Calanus species are a main driver of variation in the mesozooplankton biomass in the Barents Sea, and constitutes around 80% of the total. The proportion of Calanus decreases at low zooplankton biomass, possibly due to a combination of advective processes (low C. finmarchicus in winter) and size selective foraging. Though the Calanus species co-occur in most regions, C. glacialis dominates in the Arctic water masses, while C. finmarchicus dominates in Atlantic waters. The larger C. hyperboreus has considerably lower biomass in the Barents Sea than the other Calanus species. Stages CIV and CV have the largest contribution to Calanus species biomass, whereas stages CI-CIII have an overall low impact on the biomass. In the western area of the Barents Sea, we observe indications of an ongoing borealization of the zooplankton community, with a decreasing proportion of the Arctic C. glacialis over the past 20 years. Atlantic C. finmarchicus have increased during the same period.


Sign in / Sign up

Export Citation Format

Share Document