Induction of DNA damage and p21-dependent senescence by Riccardin D is a novel mechanism contributing to its growth suppression in prostate cancer cells in vitro and in vivo

2013 ◽  
Vol 73 (2) ◽  
pp. 397-407 ◽  
Author(s):  
Zhongyi Hu ◽  
Denglu Zhang ◽  
Jianrong Hao ◽  
Keli Tian ◽  
Wei Wang ◽  
...  
2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14631-e14631
Author(s):  
T. Xu ◽  
Y. Xu ◽  
R. Lao ◽  
K. He ◽  
L. Xue ◽  
...  

e14631 Background: Telomerase-interference (TI), a novel therapeutic strategy, exploits the high telomerase activity in prostate cancer by introducing a mutated telomerase RNA (MT-Ter) that encodes toxic telomeres. Until now, TI has been tested by targeting human telomerase in tumor cells xenografted into immuno-deficient mice, an inadequate model for predicting efficacy and toxicity. We designed and validated 2 new TI gene constructs that specifically target murine telomerase RNA (mTER), enabling the study of TI in preclinical mouse models that are immuno-competent and that develop endogenous prostate tumors. Methods: We designed 2 constructs and cloned them into a lentiviral delivery system: MT-mTER and siRNA against wild type mTer (α-mTer-siRNA). Using a mouse prostate cancer cell line, E4, we tested the 2 constructs for expression (RT-PCR), telomerase activity (TRAP), and biologic activity (53bp1 DNA damage staining, MTS growth assay, TUNEL and caspase apoptosis assays), as well as in vivo efficacy (NOD-SCID allografts). Results: We confirmed MT-mTER expression (∼50-fold) and showed that α-mTer-siRNA specifically depleted WT-mTER (80% reduction) but not MT-mTER when the 2 constructs are co-expressed; thus, the 2 constructs in combination effectively substituted MT-mTer for WT-mTer in the mouse prostate cancer cells. MT-mTER caused mutant telomeric repeats (TTTGGG instead of TTAGGG) to be added to the ends of telomeres, resulting in rapid telomeric uncapping marked by 53bp1 DNA damage foci (an average 7.5 foci/cell vs. 1.4 foci/cell in vector control). This, in turn, led to rapid and significant apoptosis (>90% TUNEL and caspase +) and growth inhibition in vitro (90% reduction by MTS) and in vivo (75% reduction in tumor allograft size). Conclusions: We successfully designed and validated MT-mTer and α-mTer-siRNA, 2 novel gene constructs that specifically target and co-opt murine telomerase activity within mouse prostate cancer cells. These constructs offer a significant advantage, as they can be used to investigate TI in immuno-competent mice that develop prostate cancer, thereby modeling actual human disease and testing TI-based therapies in a much more informative and authentic manner. No significant financial relationships to disclose.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74387 ◽  
Author(s):  
Zhongyi Hu ◽  
Feng Kong ◽  
Manfei Si ◽  
Keli Tian ◽  
Lin Xi Yu ◽  
...  

Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


2013 ◽  
Vol 189 (4S) ◽  
Author(s):  
Kristian Novakovic ◽  
Margo Quinn ◽  
Philip Fitchev ◽  
Mona Cornwell ◽  
Charles Brendler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document