scholarly journals The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues

2016 ◽  
Vol 39 (2) ◽  
pp. 137-152 ◽  
Author(s):  
K . Sanjana P. Devi ◽  
Niroshana Anandasabapathy
2020 ◽  
Vol 3 (1) ◽  
pp. 58-76 ◽  
Author(s):  
Bohan Rong ◽  
Qiong Wu ◽  
Chao Sun

Melatonin is a well-known molecule for its involvement in circadian rhythm regulation and its contribution to protection against oxidative stress in organisms including unicellular alga, animals and plants. Currently, the bio-regulatory effects of melatonin on the physiology of various peripheral tissues have drawn a great attention of scientists. Although melatonin was previously defined as a neurohormone secreted from pineal gland, recently it has been identified that virtually, every cell has the capacity to synthesize melatonin and the locally generated melatonin has multiple pathophysiological functions, including regulations of obesity and metabolic syndromes. Herein, we focus on the effects of melatonin on fat deposition in various peripheral organs/tissues. The two important regulatory mechanisms related to the topic, i.e., the improvements of circadian rhythms and antioxidative capacity will be thoroughly discussed since they are linked to several biomarkers involved in obesity and energy imbalance, including metabolism and immunity. Furthermore, several other functions of melatonin which may serve to prevent or promote obesity and energy dysmetabolism-induced pathological states are also addressed. The organs of special interest include liver, pancreas, skeletal muscle, adipose tissue and the gut microbiota.


Author(s):  
Aleksandra Baska ◽  
Kamil Leis ◽  
Przemysław Gałązka

: Berberine is an alkaloid found in plants. It has e.g. neuroprotective, anti-inflammatory and hypolipidemic activity. The research proves that it also strongly impacts the carbohydrate metabolism. The compound also protects pancreatic βcells and increases sensitivity to insulin in peripheral tissues via the induction of GLUT-1, GLUT-4 and insulin type 1 (Ins1) receptors activity. It also stimulates glycolysis and leads to a decrease in insulin resistance by macrophages polarization, lipolytic processes induction and energy expenditure enhancement (by reducing body mass and limiting insulin resistance caused by obesity). In liver berberine inhibits FOX01, SREBP1 and ChREBP pathways, and HNF-4α (hepatocyte nuclear factor 4 alpha) mRNA that hinder gluconeogenesis processes. In intestines it blocks α-glucosidase contributing to glucose absorption decrease. Its interference in intestinal flora reduces levels of monosaccharides and suppresses diabetes mellitus complications development.


2005 ◽  
Vol 26 (12) ◽  
pp. 668-675 ◽  
Author(s):  
Alessandro Moretta ◽  
Emanuela Marcenaro ◽  
Simona Sivori ◽  
Mariella Della Chiesa ◽  
Massimo Vitale ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aya Sasaki ◽  
Margaret E. Eng ◽  
Abigail H. Lee ◽  
Alisa Kostaki ◽  
Stephen G. Matthews

AbstractSynthetic glucocorticoids (sGC) are administered to women at risk of preterm delivery, approximately 10% of all pregnancies. In animal models, offspring exposed to elevated glucocorticoids, either by administration of sGC or endogenous glucocorticoids as a result of maternal stress, show increased risk of developing behavioral, endocrine, and metabolic dysregulation. DNA methylation may play a critical role in long-lasting programming of gene regulation underlying these phenotypes. However, peripheral tissues such as blood are often the only accessible source of DNA for epigenetic analyses in humans. Here, we examined the hypothesis that prenatal sGC administration alters DNA methylation signatures in guinea pig offspring hippocampus and whole blood. We compared these signatures across the two tissue types to assess epigenetic biomarkers of common molecular pathways affected by sGC exposure. Guinea pigs were treated with sGC or saline in late gestation. Genome-wide modifications of DNA methylation were analyzed at single nucleotide resolution using reduced representation bisulfite sequencing in juvenile female offspring. Results indicate that there are tissue-specific as well as common methylation signatures of prenatal sGC exposure. Over 90% of the common methylation signatures associated with sGC exposure showed the same directionality of change in methylation. Among differentially methylated genes, 134 were modified in both hippocampus and blood, of which 61 showed methylation changes at identical CpG sites. Gene pathway analyses indicated that prenatal sGC exposure alters the methylation status of gene clusters involved in brain development. These data indicate concordance across tissues of epigenetic programming in response to alterations in glucocorticoid signaling.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fernando R. Fernandez ◽  
Mircea C. Iftinca ◽  
Gerald W. Zamponi ◽  
Ray W. Turner

AbstractT-type calcium channels are important regulators of neuronal excitability. The mammalian brain expresses three T-type channel isoforms (Cav3.1, Cav3.2 and Cav3.3) with distinct biophysical properties that are critically regulated by temperature. Here, we test the effects of how temperature affects spike output in a reduced firing neuron model expressing specific Cav3 channel isoforms. The modeling data revealed only a minimal effect on baseline spontaneous firing near rest, but a dramatic increase in rebound burst discharge frequency for Cav3.1 compared to Cav3.2 or Cav3.3 due to differences in window current or activation/recovery time constants. The reduced response by Cav3.2 could optimize its activity where it is expressed in peripheral tissues more subject to temperature variations than Cav3.1 or Cav3.3 channels expressed prominently in the brain. These tests thus reveal that aspects of neuronal firing behavior are critically dependent on both temperature and T-type calcium channel subtype.


1985 ◽  
Vol 260 (4) ◽  
pp. 2452-2457 ◽  
Author(s):  
T C Newman ◽  
P A Dawson ◽  
L L Rudel ◽  
D L Williams

Sign in / Sign up

Export Citation Format

Share Document