Effect of lithium hexafluorophosphate LiPF6 and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [Bmim][TFSI] immobilized in poly(2-hydroxyethyl methacrylate) PHEMA

2018 ◽  
Vol 76 (7) ◽  
pp. 3693-3707
Author(s):  
N. I. B. Wafi ◽  
W. R. W. Daud ◽  
A. Ahmad ◽  
E. H. Majlan ◽  
M. R. Somalu
2009 ◽  
Vol 1 (7) ◽  
pp. 1525-1532 ◽  
Author(s):  
Jem-Kun Chen ◽  
Zong-Yan Chen ◽  
Han-Ching Lin ◽  
Po-Da Hong ◽  
Feng-Chih Chang

2011 ◽  
Vol 52 (3) ◽  
pp. 193-200 ◽  
Author(s):  
S. D’Ercole ◽  
M. Di Giulio ◽  
R. Grande ◽  
E. Di Campli ◽  
S. Di Bartolomeo ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1400
Author(s):  
Nicole Mangiacotte ◽  
Graeme Prosperi-Porta ◽  
Lina Liu ◽  
Megan Dodd ◽  
Heather Sheardown

While the use of topical drops for the delivery of drugs to the anterior of the eye is well accepted, it is far from efficient with as little as 5% of the drug instilled on the eye actually reaching the target tissue. The ability to prolong the residence time on the eye is desirable. Based on the acceptability of 2-hydroxyethyl methacrylate based polymers in contact lens applications, the current work focuses on the development of a poly(2-hydroxyethyl methacrylate (HEMA)) nanoparticle system. The particles were modified to allow for degradation and to permit mucoadhesion. Size and morphological analysis of the final polymer products showed that nano-sized, spherical particles were produced. FTIR spectra demonstrated that the nanoparticles comprised poly(HEMA) and that 3-(acrylamido)phenylboronic acid (3AAPBA), as a mucoadhesive, was successfully incorporated. Degradation of nanoparticles containing N,N′-bis(acryloyl)cystamine (BAC) after incubation with DL-dithiothreitol (DTT) was confirmed by a decrease in turbidity and through transmission electron microscopy (TEM). Nanoparticle mucoadhesion was shown through an in-vitro zeta potential analysis.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Xuejiao Jin ◽  
Jie Zhang ◽  
Tingting An ◽  
Huihui Zhao ◽  
Wenhao Fu ◽  
...  

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


Sign in / Sign up

Export Citation Format

Share Document