Water surface reinforcement effect in 3D printed polymer derived SiOC ceramics

2021 ◽  
Vol 127 (2) ◽  
Author(s):  
Xuehui Yang ◽  
Jian Zhang ◽  
Hye-Yeong Park ◽  
Yeon-Gil Jung ◽  
Alan Jones ◽  
...  
2021 ◽  
Vol 11 (11) ◽  
pp. 4986
Author(s):  
Adam Tejkl ◽  
Petr Kavka

Evaporation is an important part of the hydrological cycle. This paper discusses the materials and methods we used to develop an evaporometer, which measures evaporation from the water surface, like a drop in water level. The main problem is that there are relatively small differences in the levels measured directly in the field. During the research, we tested conductive filament and stainless steel as measuring electrode materials. We used 3D printing in combination with low-cost open-source electronics and a hand-etched circuit board to make a device which measures the free water surface level. A 3D printed jig is used when assembling the device, and this ensures that the contact electrodes are set precisely. Another 3D printed jig is used to create the etched circuit board, which holds all the electronic devices. The device uses the low-cost open-source Arduino Uno electronics microcontroller board. Our results show that high-precision measurements can be gathered with the use of open-source electronics in 3D printed housing. The device is also durable and easy to maintain.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

2019 ◽  
Author(s):  
Avital Perry ◽  
Soliman Oushy ◽  
Lucas Carlstrom ◽  
Christopher Graffeo ◽  
David Daniels ◽  
...  

2020 ◽  
Vol 20 (3) ◽  
pp. 343-353
Author(s):  
Ngo Van He ◽  
Le Thi Thai

In this paper, a commercial CFD code, ANSYS-Fluent has been used to investigate the effect of mesh number generated in the computed domain on the CFD aerodynamic performances of a container ship. A full-scale model of the 1200TEU container ship has been chosen as a reference model in the computation. Five different mesh numbers for the same dimension domain have been used and the CFD aerodynamic performances of the above water surface hull of the ship have been shown. The obtained CFD results show a remarkable effect of mesh number on aerodynamic performances of the ship and the mesh convergence has been found. The study is an evidence to prove that the mesh number has affected the CFD results in general and the accuracy of the CFD aerodynamic performances in particular.


Sign in / Sign up

Export Citation Format

Share Document