Evaluation of the crystallization kinetic parameters in terms of the sheet resistance of amorphous As30Te60Ga10 films

2021 ◽  
Vol 127 (12) ◽  
Author(s):  
Alaa M. Abd-Elnaiem ◽  
Rashed M. Hassan
2015 ◽  
Vol 37 (6) ◽  
pp. 394-401 ◽  
Author(s):  
P. I. Loboda ◽  
T. O. Soloviova ◽  
Yu. I. Bogomol ◽  
D. O. Remizov ◽  
O. I. Bilyi

2000 ◽  
Vol 15 (4) ◽  
pp. 1000-1007 ◽  
Author(s):  
Haoyue Zhang ◽  
Brian S. Mitchell

A new equation was developed for evaluating kinetic parameters in the isokinetic range of a phase transformation using nonisothermal calorimetric techniques. The Johnson–Mehl–Avrami equation was extended by considering that the transformation rate in an isothermal process can be translated into the nonisothermal transformation in an isokinetic range. The Avrami exponent, n, activation energy, E, and frequency factor, K0, were calculated from only one nonisothermal experiment by using the new kinetic equation for amorphous Se (a-Se), polysilane/polycarbosilane (PS/PCS), and lithium disilicate (LiO2 · 2SiO2 or LS2) samples with nucleation site saturation. The values of E and K0 calculated using the new kinetic equation agree well with those obtained by the Kissinger equation for the prenucleated a-Se, PS/PCS, and LS2 samples. The values of n indicate that volume crystallization is dominant in the bulk a-Se and LS2 samples, whereas surface crystallization is dominant in the powdered PS/PCS sample. These results for a-Se were confirmed by scanning and transmission electronic microscopy.


2019 ◽  
Vol 3 (1) ◽  
pp. 21 ◽  
Author(s):  
Beatriz Menezes ◽  
Tiago Campos ◽  
Thais Montanheiro ◽  
Renata Ribas ◽  
Luciana Cividanes ◽  
...  

Behavior studies of thermoplastic polymers during non-isothermal crystallization are extremely important since most of their properties are influenced by degree of crystallinity and the crystallization process. In general, an approach based on a model-fitting method is used to perform crystallization kinetic studies. Due to their inability to uniquely determine the reaction mode, many studies have used the isoconversional method, where it is not necessary to assume a crystallization model to obtain the kinetic parameters. Therefore, in this work, the influence of acid and octadecylamine functionalized carbon nanotubes (CNTs) in the crystallization kinetic of polyethylene (PE) was studied using an isoconversional method with differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The kinetic parameters and the crystallization model were determined. The incorporation of functionalized and non-functionalized CNTs into PE did not change the Johnson-Mehl-Avrami crystallization model. However, the CNTs increased the crystallization temperature and reduced the activation energy for crystallization. In addition, the Avrami coefficient values were lower for the nanocomposites when compared to pure PE. The incorporation of CNTs accelerated the crystallization of PE, reducing the crystallite sizes and modifying their morphology.


Sign in / Sign up

Export Citation Format

Share Document