Optimized water vapor permeability of sodium alginate films using response surface methodology

2013 ◽  
Vol 31 (6) ◽  
pp. 1196-1203 ◽  
Author(s):  
Qing Zhang ◽  
Jiachao Xu ◽  
Xin Gao ◽  
Xiaoting Fu
2021 ◽  
Vol 55 (7-8) ◽  
pp. 849-865
Author(s):  
PARTHIBAN FATHIRAJA ◽  
SUGUMAR GOPALRAJAN ◽  
MASILAN KARUNANITHI ◽  
MURALIDHARAN NAGARAJAN ◽  
MOHAN CHITRADURGA OBAIAH ◽  
...  

The aim of the study has been to develop a biodegradable film from marine polysaccharides. The optimization of polysaccharides quantity for the composite film was sought by empirical response surface methodology. The Box–Behnken Model Design was applied to optimize the concentration of chitosan (1.0-2.0% (w/v), agar (1.0-2.0% (w/v) and glycerol (0.1-0.5% (w/v) as independent variables to achieve the goal. The overall desirability function fits with the quadratic model (0.862043) at a significant level (p < 0.05) for the optimum concentration of chitosan (1.5% (w/v), agar (2.0% (w/v) and glycerol (0.41% (w/v) to obtain the minimum water vapor permeability (7.25 10-10g m m-2 Pa-1 s-1) and maximum tensile strength (12.21 Ma P), elongation at break (7.32%) and puncture resistance (16.18 N) in the optimized composite film. The absolute residual errors of experimental and predicted responses were between 1.24 and 3.56% acceptable levels. Attenuated total reflection–Fourier transform infrared spectroscopy confirmed the intermolecular non-covalent hydrogen bond between the hydroxyl groups of agar and glycerol with the amino group of chitosan. 3D atomic force microscopy images revealed that the chitosan, agar and glycerol film has layer-by-layer smooth surface properties due to homogenous interaction among the polysaccharides; this provides the film with good mechanical properties and with functional application. Chitosan was found to be responsible for the lower level of water vapor permeability and higher puncture resistance of the film. Tensile strength and elongation at break were influenced by agar and glycerol. The whiteness of the film was negatively affected with the concentration of chitosan.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
R. Ramesh ◽  
Hemalatha Palanivel ◽  
S. Venkatesa Prabhu ◽  
Belachew Zegale Tizazu ◽  
Adugna Abdi Woldesemayat

Starch-based edible films are gaining huge interest in food packaging industries. In the present work, avocado seed starch (ASS) was extracted and used to develop an edible film. The influence of four important process factors, starch, agar, sorbitol, and Tween-20, was studied on one of the important barrier properties, water-vapor permeability (WP), of developed edible film. The three-level RSM design with Box–Behnken approach was carried out to investigate the film property, WP. ASS-based edible films were prepared by the casting method. The results revealed that the increment in the contents of Tween-20 and sorbitol reduces the WP of the film. Using the response surface analysis, the effect of the aforementioned factors was analyzed; they showed significant impact on WP. To predict the influence of the selected process parameters, a second-order polynomial equation was constructed. Additionally, Pareto analysis of variance was employed over the obtained results to investigate the significance of the developed process model.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinshu Liu ◽  
Xiaoyan Ma ◽  
Wenzhao Shi ◽  
Jianwei Xing ◽  
Chaoqun Ma ◽  
...  

Abstract Baicalin, an active flavonoid ingredient of Scutellaria baicalensis Georgi, was extracted by heat reflux extraction and showed the same significance UV absorption property with standard baicalin. Active films were prepared from polyvinyl alcohol (PVA) containing baicalin extract by casting method. The effect of baicalin extracts on the UV-blocking, optical, antioxidant property, water vapor permeability, swelling and mechanical properties of the films were studied. UV–vis transmittance spectra showed that PVA films incorporated with baicalin extract blocked ultraviolet light range from 280–400 nm even with low concentration of baicalin (0.5 wt%) and maintain the high transparency in visible spectrum. The outstanding UV-blocking properties of PVA films incorporated with baicalin extract were also confirmed by Rhodamine B degradation. Baicalin conferred antioxidant properties to PVA films as determined by DPPH radical scavenging activity. Due to the interaction between hydroxy groups of baicalin and PVA molecule, water vapor permeability, swelling and elongation at break of the films were decreased accompanied with the increasing in tensile strength and Young’s modulus. FTIR reveal that the interaction between PVA molecules was significant changed by the introduction of baicalin. These results suggest that PVA film incorporated with baicalin extract can be used for the development of functional protective film.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 602
Author(s):  
Carmen Rodica Pop ◽  
Teodora Emilia Coldea ◽  
Liana Claudia Salanţă ◽  
Alina Lăcrămioara Nistor ◽  
Andrei Borşa ◽  
...  

Kefiran is an exopolysaccharide classified as a heteropolysaccharide comprising glucose and galactose in equimolar quantities, and it is classified as a water-soluble glucogalactan. This work aimed to investigate the effect of different extraction conditions of kefiran on the structural and physical properties of the edible films obtained. Fourier-transform infrared spectroscopy and scanning electron microscopy were performed, together with a determinations of moisture content, solubility, water vapor permeability and degree of swelling. The kefiran films presented values of the water vapor permeability between 0.93 and 4.38 × 10−11 g/m.s.Pa. These results can be attributed to the development of a more compact structure, where glycerol had no power to increase the free volume and the water vapor diffusion through their structure. The possible conformational changes in the kefiran film structure, due to the interspersing of the plasticizers and water molecules that they absorb, could be the reason for producing flexible kefiran films in the case of using glycerol as a plasticizer at 7.5% w/w. Moreover, it was observed that the extraction conditions are a significant factor in the properties of these films and their food technology applications.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3090
Author(s):  
Anita Ptiček Siročić ◽  
Ana Rešček ◽  
Zvonimir Katančić ◽  
Zlata Hrnjak-Murgić

The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.


Author(s):  
Grégoire David ◽  
Laurent Heux ◽  
Stéphanie Pradeau ◽  
Nathalie Gontard ◽  
Hélène Angellier-Coussy

Abstract This paper aims at investigating the potential of vine shoots (ViSh) upcycling as fillers in novel poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) based biocomposites. ViSh particles of around 50 µm (apparent median diameter) were obtained combining dry grinding processes, and mixed with PHBV using melt extrusion. Thermal stability and elongation at break of biocomposites were reduced with increasing contents of ViSh particles (10, 20 and 30 wt%), while Young’s modulus and water vapor permeability were increased. It was shown that a surface gas-phase esterification allowed to significantly increase the hydrophobicity of ViSh particles (increase of water contact angles from 59° to 114°), leading to a reduction of 27% in the water vapor permeability of the biocomposite filled with 30 wt% of ViSh. The overall mechanical performance was not impacted by gas-phase esterification, demonstrating that the interfacial adhesion between the virgin ViSh particles and the PHBV matrix was already good and that such filler surface treatment was not required in that case. It was concluded that ViSh particles can be interestingly used as low cost fillers in PHBV-based biocomposites to decrease the overall cost of materials.


2009 ◽  
Vol 4 (3) ◽  
pp. 442-449 ◽  
Author(s):  
Yuhua Zhang ◽  
Masatoshi Ishida ◽  
Yutaka Kazoe ◽  
Yohei Sato ◽  
Norihisa Miki

2018 ◽  
Vol 105 ◽  
pp. 637-644 ◽  
Author(s):  
M.K.S. Monteiro ◽  
V.R.L. Oliveira ◽  
F.K.G. Santos ◽  
E.L. Barros Neto ◽  
R.H.L. Leite ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document