Ultraviolet blocking and antioxidant polyvinyl alcohol films incorporated with baicalin extraction from Scutellaria baicalensis Georgi

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinshu Liu ◽  
Xiaoyan Ma ◽  
Wenzhao Shi ◽  
Jianwei Xing ◽  
Chaoqun Ma ◽  
...  

Abstract Baicalin, an active flavonoid ingredient of Scutellaria baicalensis Georgi, was extracted by heat reflux extraction and showed the same significance UV absorption property with standard baicalin. Active films were prepared from polyvinyl alcohol (PVA) containing baicalin extract by casting method. The effect of baicalin extracts on the UV-blocking, optical, antioxidant property, water vapor permeability, swelling and mechanical properties of the films were studied. UV–vis transmittance spectra showed that PVA films incorporated with baicalin extract blocked ultraviolet light range from 280–400 nm even with low concentration of baicalin (0.5 wt%) and maintain the high transparency in visible spectrum. The outstanding UV-blocking properties of PVA films incorporated with baicalin extract were also confirmed by Rhodamine B degradation. Baicalin conferred antioxidant properties to PVA films as determined by DPPH radical scavenging activity. Due to the interaction between hydroxy groups of baicalin and PVA molecule, water vapor permeability, swelling and elongation at break of the films were decreased accompanied with the increasing in tensile strength and Young’s modulus. FTIR reveal that the interaction between PVA molecules was significant changed by the introduction of baicalin. These results suggest that PVA film incorporated with baicalin extract can be used for the development of functional protective film.

2021 ◽  
Vol 60 (1) ◽  
Author(s):  
Gema Morales-Olán ◽  
María Antonieta Ríos-Corripio ◽  
Aleida Selene Hernández-Cázares ◽  
Placido Zaca-Morán ◽  
Silvia Luna-Suárez ◽  
...  

Research background. Amaranth flour (Amaranthus hypochondriacus) produces films with excellent barrier properties against water vapor, allowing food preservation, but the mechanical properties are poor versus to synthetic films. One strategy to improve these properties is the incorporation of nanoparticles. The particles can also serve as a vehicle for the addition of antioxidants agents into the films. The objective of this work was to optimize the formulation for preparation of amaranth flour films treated with antioxidant chia (Salvia hispanica L.) extract-loaded chitosan particles using RSM. Experimental approach. Chitosan nanoparticles with the extract were synthesized by ionic gelation, and the films were made by the casting method. Three independent variables were assigned: amaranth flour (4-6 %), glycerol (25-35 %), and chitosan nanoparticles loaded with the chia extract (0-0.75 %). We then evaluated the physical (thickness), mechanical (tensile strength, Young´s modulus, and elongation), barrier (water vapor permeability, moisture, and water solubility), and antioxidant properties of the films. The experimental results of the properties were analyzed using a Box-Behnken experimental design generating 15 runs with three replicates at the central point. Results and conclusions. Second and third order polynomial models were obtained from the ANOVA analysis of the evaluated responses, and high coefficients of determination were found (0.91-1.0). The films presented a water vapor permeability of 0.82-2.39·10-7 (g·mm)/(Pa·s·m2), a tensile strength of 0.33-1.63 MPa, and antioxidant activity of 2.24-5.65 %. The variables had different effects on the films: The glycerol negatively affected their properties, and the permeability values increased with amaranth flour concentration. The nanoparticles improved the mechanical, barrier, and antioxidant properties of the films versus films without nanosystems. The optimal formulation was 4 % amaranth flour, 25 % of glycerol, and 0.36 % of chitosan nanoparticles. The optimized films had better mechanical (1.62 MPa) properties, a low water vapor permeability value (0.91·10-7 (g·mm)/(Pa·s·m2)), and moderate antioxidant activity (6.43 %). Novelty and scientific contribution. The results show the effect of chitosan nanoparticles on the properties of amaranth flour films for the first time. The resulting equations are useful in the design of food packaging.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1105 ◽  
Author(s):  
Giannakas ◽  
Salmas ◽  
Leontiou ◽  
Tsimogiannis ◽  
Oreopoulou ◽  
...  

The increased global market trend for food packaging is imposing new improved methods for the extension of shelf-life and quality of food products. Active packaging, which is based on the incorporation of additives into packaging materials, is becoming significant for this purpose. In this work, nanostructured low-density polyethylene (LDPE) was combined with chitosan (CS) to aim for a food packaging development with an increased oxygen permeability barrier and higher antimicrobial activity. Furthermore, essential oil extracts as rosemary (RO) and Melissa (MO) were added to this packaging matrix in order to improve its antioxidant properties and vanish food odor problems. The novel nanostructured active packaging film was tested using laboratory instrumental methods, such as thermogravimetry (TG), Fourier-transform infrared (FTIR) spectrometry, the X-ray diffraction (XRD) method, a dilatometer for tensile properties (DMA), and an oxygen permeation analyzer (OPA). Moreover, laboratorian tests according to ASTM standards were carried out for the estimation of water sorption, water vapor permeability, overall migration, and, finally, the antioxidant properties of such films. The experimental results have indicated that the final material exhibits advanced properties. More specifically, chitosan addition was observed to lead to an enhanced oxygen and water-vapor permeability barrier while the extracted essential oil addition led to enhanced tensile strength and antioxidant properties.


Desalination ◽  
1987 ◽  
Vol 62 ◽  
pp. 293-297 ◽  
Author(s):  
Yu Xianda ◽  
Wang Anlai ◽  
Cao Suqin

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Marco A. López-Mata ◽  
Saul Ruiz-Cruz ◽  
Norma Patricia Silva-Beltrán ◽  
José de Jesús Ornelas-Paz ◽  
Víctor Manuel Ocaño-Higuera ◽  
...  

Chitosan films (CF) with cinnamon bark oil (CO) incorporated at 0% (control), 0.25%, 0.5%, and 1.0% v/v were prepared by an emulsion method. The films were characterized based on their physical properties (solubility, water vapor permeability, optical property, and microstructure) and antioxidant properties (DPPH, ABTS, and its protective effects on human erythrocytes). The results showed that the incorporation of 0.5 and 1.0% of CO into the CF significantly decreased its solubility to 22% of the control (p<0.05). The water vapor permeability of the CF-CO was significantly reduced to 40% with low concentrations of CO (0.25%) incorporated into the CF. In general, the films presented a yellow coloration and an increase in transparency with the incorporation of CO into the CF. It was also observed that the incorporation of CO increased the antioxidant activity between 6.0-fold and 14.5-fold compared to the control, and the protective capacity against erythrocyte hemolysis increased by as much as 80%.


2021 ◽  
Vol 20 (2) ◽  
pp. 133-147
Author(s):  
Sajad Pirsa ◽  
Behzad Mohammadi

In this study, chitosan-polyaniline nanocomposite film was prepared in combination with different concentrations of polyaniline at various synthesis times. Surface morphology, antioxidant properties, water solubility, water vapor permeability (WVP), color properties and light transparency properties of the films were investigated. The size, shape and morphology of the synthesized particles were examined with scanning electron microscopy (SEM) technique. The results indicated that the synthesized polyaniline particles were spherical and in the range of 45–70 nm. The results obtained from the study of the effect of polyaniline on the physical properties of the chitosan film showed that increasing polyaniline concentration and synthesis time causes a decrease in the rate of the water solubility and water vapor permeability. This is an important factor in expanding its use in food packaging. The results of the colorimetric studies showed that the polyaniline sharply changed the surface color of the film. Polyaniline also increased antioxidant properties of composite film. Investigating the light transmission and transparency of the films showed that the polyaniline reduced the transparency and transmission of light, which could be used to package products that are susceptible to oxidation in the light.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1406
Author(s):  
Chanitda Taweechat ◽  
Tipapon Wongsooka ◽  
Saroat Rawdkuen

The objective of this study was to develop an active banana starch film (BSF) incorporated with banana peel extract. We compared the film’s properties with commercial wrap film (polyvinyl chloride; PVC). Moreover, a comparison of the quality of minced pork wrapped during refrigerated storage (7 days at ±4 °C) was also performed. The BSF with different concentrations of banana peel extract (0, 1, 3, and 5 (%, w/v)) showed low mechanical properties (tensile strength (TS): 4.43–31.20 MPa and elongation at break (EAB): 9.66–15.63%) and water vapor permeability (3.74–11.0 × 10−10 g mm/sm2 Pa). The BSF showed low film solubility (26–41%), but excellent barrier properties to UV light. The BSF had a thickness range of 0.030–0.047 mm, and color attributes were: L* = 49.6–51.1, a* = 0.21–0.43, b* = 1.26–1.49. The BSF incorporated with banana peel extracts 5 (%, w/v) showed the highest radical scavenging activity (97.9%) and inhibitory activity of E. coli O157: H7. The BSF showed some properties comparable to the commercial PVC wrap film. Changes in qualities of minced pork were determined for 7 days during storage at ±4 °C. It was found that thiobarbituric acid reactive substances (TBARS) of the sample wrapped with the BSF decreased compared to that wrapped with the PVC. The successful inhibition of lipid oxidation in the minced pork was possible with the BSF. The BSF incorporated with banana peel extract could maintain the quality of minced pork in terms of oxidation retardation.


2015 ◽  
Vol 35 (8) ◽  
pp. 765-771 ◽  
Author(s):  
Anatoly A. Ol’khov ◽  
Alexey L. Iordanskii ◽  
Tamara P. Danko

Abstract The morphology of extruded films based on blends of polyvinyl alcohol (PVA) and poly(3-hydroxybutyrate) (PHB) was studied for various compositions. The methods of differential scanning calorimetry (DSC) and X-ray analysis were used. The phase-sensitive characteristics of the composite films, diffusion and water vapor permeability were also investigated. Processes of binding of water and swelling cause the first areas; processes of a relaxation and transition of structure of composites to an equilibrium condition, the second. In addition, the tensile modulus and relative elongation-at-break were measured. Changes in the glass transition temperature (Tg) of the blends and constant melting points of the components show their partial compatibility in intercrystalline regions. At a content of PHB in the composite films equal to 20–30% wt., the mechanical characteristics and water diffusion coefficients are dramatically changed. This fact, along with the analysis of the X-ray diffractograms, indicates a phase inversion in the above narrow concentration interval. The complex pattern of the kinetic curves of water vapor permeability is likely to be related to additional crystallization, which is induced in the composite films in the presence of water.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4369
Author(s):  
Swarup Roy ◽  
Jong-Whan Rhim

Curcumin incorporated poly(butylene adipate-co-terephthalate) (PBAT) based film was fabricated. Curcumin has uniformly distributed in the PBAT matrix to form a bright yellow PBAT/curcumin film. The PBAT/curcumin film has slightly reduced tensile strength and flexibility than the neat PBAT film, while the thermal stability of the film has not changed significantly. The blending of curcumin significantly decreased the water vapor permeability of the PBAT film. Additionally, the PBAT/curcumin film showed potent antioxidant activity with some antimicrobial activity. The PBAT/curcumin films with improved water vapor barrier and additional functions can be used for active packaging applications.


2020 ◽  
Vol 9 (2) ◽  
pp. 88-95
Author(s):  
Baiq Amelia Riyandari

Preparation of PEC chitosan-alginate films incorporated by eugenol has been investigated. Incorporation of eugenol in chitosan-alginate films was conducted by using the different concentration of eugenol including 0.25% 0.5%, and 1% (% w/v). The effect of eugenol incorporation in chitosan-alginate films was investigated through some properties of the films such as tensile strength, elongation at break, transparency value, and water vapor permeability. Meanwhile, the effectiveness of eugenol incorporation as an active compound of the films was investigated from antioxidant activity of chitosan-alginate films incorporated eugenol. Polyelectrolyte complex (PEC) films of chitosan-alginate was occurred through molecular interaction between polycationic groups of chitosan and polyanionic groups of alginate. The formation of chitosan-alginate PEC films was synthesized at pH ± 4.0. Based on FTIR analysis, the ionic interaction between amine groups (–NH3+) and carboxylate groups (–COO¬) formed strongly. Characterization of films also indicated that PEC films of chitosan-alginate incorporated of eugenol was formed. Study showed that PEC chitosan-alginate films had good mechanical properties. Antioxidant activity assay through  fixed reaction time method  using DPPH radical (α,α-difenil-β- pikrilhidrazil) resulted in good percentage of radical scavenging activity (%RSA) from the films. The E3 films which contain 1% eugenol has 55.99% of  RSA value in 96 hours.


Sign in / Sign up

Export Citation Format

Share Document