Interaction of Auxin and Nitric Oxide Improved Photosynthetic Efficiency and Antioxidant System of Brassica juncea Plants Under Salt Stress

Author(s):  
Mohammad Shiraz ◽  
Fareen Sami ◽  
Husna Siddiqui ◽  
Mohammad Yusuf ◽  
Shamsul Hayat
Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1303
Author(s):  
Badar Jahan ◽  
Noushina Iqbal ◽  
Mehar Fatma ◽  
Zebus Sehar ◽  
Asim Masood ◽  
...  

In the present study, the potential of ethylene as ethephon (an ethylene source) was investigated individually and in combination with split doses of nitrogen (N) and sulfur (S) soil treatments for removal of the damaging effects of salt stress (100 mM NaCl) in mustard (Brassica juncea L.). Plants were grown with 50 mg N plus 50 mg S kg−1 soil at sowing time and an equivalent dose at 20 days after sowing [N50 + S50]0d and 20d. Ethephon at 200 μL L‒1 was applied to combined split doses of N and S with or without NaCl. Plants subjected to NaCl showed a decrease in growth and photosynthetic characteristics as well as N and S assimilation, whereas proline metabolism and antioxidants increased. The application of ethephon to plants grown with split N and S doses significantly enhanced photosynthetic efficiency by increasing the assimilation of N and S, improving the concentration of proline and induction of the antioxidant system with or without NaCl. The regulation of ethylene and/or split forms of N and S application may be potential tools for not just overcoming salt stress effects in this species and in related Brassicaceae but also enhancing their photosynthesis and growth potential through increased nutrient assimilation.


Author(s):  
Badar Jahan ◽  
Mehar Fatma ◽  
Zebus Sehar ◽  
Asim Masood ◽  
Adriano Sofo ◽  
...  

In the present study, the potential of ethylene as ethephon (an ethylene source) was investigated individually or with a combination of the split dosage of nitrogen (N) and sulfur (S) soil treatments for the removal of damaging effects of salt stress (100 mM NaCl) in mustard (Brassica juncea L.). Plants were grown with 50 mg N plus 50 mg S kg−1 soil at sowing time and an equivalent dosage at 20 days after sowing ([N50 + S50]0d + [N50 + S50]20d). Ethephon at 200 μL L‒1 was applied to combined split dosage of N and S with or without NaCl. Plants subjected to NaCl showed a deceased in growth and photosynthetic characteristics as well as N and S assimilation, though, proline metabolism and antioxidants increased. The application of ethephon to plants grown with split N and S dosages significantly enhanced the photosynthetic efficiency by increasing the assimilation of N and S, improving the content of proline and induction of the antioxidant system with or without NaCl. The regulation of ethylene and/or split form N and S application may be the potential tools for overcoming salt stress effects in this species and in related Brassicaceae.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1693
Author(s):  
Ghalia S. H. Alnusairi ◽  
Yasser S. A. Mazrou ◽  
Sameer H. Qari ◽  
Amr A. Elkelish ◽  
Mona H. Soliman ◽  
...  

Salinity stress is one of the major environmental constraints responsible for a reduction in agricultural productivity. This study investigated the effect of exogenously applied nitric oxide (NO) (50 μM and 100 μM) in protecting wheat plants from NaCl-induced oxidative damage by modulating protective mechanisms, including osmolyte accumulation and the antioxidant system. Exogenously sourced NO proved effective in ameliorating the deleterious effects of salinity on the growth parameters studied. NO was beneficial in improving the photosynthetic efficiency, stomatal conductance, and chlorophyll content in normal and NaCl-treated wheat plants. Moreover, NO-treated plants maintained a greater accumulation of proline and soluble sugars, leading to higher relative water content maintenance. Exogenous-sourced NO at both concentrations up-regulated the antioxidant system for averting the NaCl-mediated oxidative damage on membranes. The activity of antioxidant enzymes increased the protection of membrane structural and functional integrity and photosynthetic efficiency. NO application imparted a marked effect on uptake of key mineral elements such as nitrogen (N), potassium (K), and calcium (Ca) with a concomitant reduction in the deleterious ions such as Na+. Greater K and reduced Na uptake in NO-treated plants lead to a considerable decline in the Na/K ratio. Enhancing of salt tolerance by NO was concomitant with an obvious down-regulation in the relative expression of SOS1, NHX1, AQP, and OSM-34, while D2-protein was up-regulated.


2018 ◽  
Vol 118 ◽  
pp. 120-128 ◽  
Author(s):  
H. Siddiqui ◽  
M. Yusuf ◽  
A. Faraz ◽  
M. Faizan ◽  
F. Sami ◽  
...  

Author(s):  
I. A. Palagina

Succinate containing compounds possess many types of biological activity and are used for the development of drugs with the target and complex action. This paper is devoted to some aspects of the mechanism of succinamides’ action in a dose of 100 mg/kg. We studied the influence of the compound with antidiabetic properties, -phenylethylamide of 2-oxysuccinanyl acid ( -PhEA-OSAA), and its metabolites such as 2-hydroxyphenylsuccinamide (2-HPhSA) and β-phenylethylsuccinamide ( -PhESA) on the marker indicators of energetic metabolism (EM), antioxidant system (AOS) and nitric oxide (NO) metabolism in subacute experiment on rats. Studies have shown that the action of -FEA-OSAKA on metabolic homeostasis is realized through stimulation of EM, reduction of intensity of NO-synthase metabolism and weakening of the AOS. The nature of the action of -FES and 2-GFS, taking into account the indicators of the state of homeostasis, largely coincides with β-FEA-OSAKA. It was found that the key links in the mechanism of toxic action of succinamides are the effect on antioxidant potential, NO metabolism and energy processes.


2009 ◽  
Vol 31 (5) ◽  
pp. 889-897 ◽  
Author(s):  
Q. Fariduddin ◽  
S. Khanam ◽  
S. A. Hasan ◽  
B. Ali ◽  
S. Hayat ◽  
...  

Author(s):  
Piotr Dąbrowski ◽  
Aneta H. Baczewska-Dąbrowska ◽  
Filippo Bussotti ◽  
Martina Pollastrini ◽  
Kazimierz Piekut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document