scholarly journals Exogenous Nitric Oxide Reinforces Photosynthetic Efficiency, Osmolyte, Mineral Uptake, Antioxidant, Expression of Stress-Responsive Genes and Ameliorates the Effects of Salinity Stress in Wheat

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1693
Author(s):  
Ghalia S. H. Alnusairi ◽  
Yasser S. A. Mazrou ◽  
Sameer H. Qari ◽  
Amr A. Elkelish ◽  
Mona H. Soliman ◽  
...  

Salinity stress is one of the major environmental constraints responsible for a reduction in agricultural productivity. This study investigated the effect of exogenously applied nitric oxide (NO) (50 μM and 100 μM) in protecting wheat plants from NaCl-induced oxidative damage by modulating protective mechanisms, including osmolyte accumulation and the antioxidant system. Exogenously sourced NO proved effective in ameliorating the deleterious effects of salinity on the growth parameters studied. NO was beneficial in improving the photosynthetic efficiency, stomatal conductance, and chlorophyll content in normal and NaCl-treated wheat plants. Moreover, NO-treated plants maintained a greater accumulation of proline and soluble sugars, leading to higher relative water content maintenance. Exogenous-sourced NO at both concentrations up-regulated the antioxidant system for averting the NaCl-mediated oxidative damage on membranes. The activity of antioxidant enzymes increased the protection of membrane structural and functional integrity and photosynthetic efficiency. NO application imparted a marked effect on uptake of key mineral elements such as nitrogen (N), potassium (K), and calcium (Ca) with a concomitant reduction in the deleterious ions such as Na+. Greater K and reduced Na uptake in NO-treated plants lead to a considerable decline in the Na/K ratio. Enhancing of salt tolerance by NO was concomitant with an obvious down-regulation in the relative expression of SOS1, NHX1, AQP, and OSM-34, while D2-protein was up-regulated.

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 75
Author(s):  
Amira K. Nasrallah ◽  
Ahmed A. Kheder ◽  
Maimona A. Kord ◽  
Ahmed S. Fouad ◽  
Mohamed M. El-Mogy ◽  
...  

Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.


Author(s):  
Arghavan Salimi ◽  
Mohammad Etemadi ◽  
Saeid Eshghi ◽  
Akbar Karami ◽  
Javad Alizargar

The role of plant growth-promoting rhizobacteria (PGPR) on enhancing tolerance of plants to abiotic stresses is well reported, but the effects of RGPRs on plants under salinity stress are not widely studied in the literature. Our study aimed to investigate the effect of Halomonas sp. and Azotobacter sp. on antioxidant activity, secondary metabolites, and biochemicals changes of purple basil under salinity stress conditions. The applied salt concentrations in this study were 50, 100, and 150 mM sodium chloride (NaCl). Salinity stress had a negative effect on plant growth parameters. Moreover, a reduction in some of the osmolytes and oxidative stress markers was observed. Inoculated plants ameliorated the oxidative damage by reducing the hydrogen peroxide (H2O2) contents and by increasing osmolytes (proline, total proteins, and soluble sugars), antioxidant enzymes activities (catalase, ascorbate peroxidase) and secondary metabolites (flavonoids). Overall, among treatments, plants inoculated with Azotobacter showed a better impact on physiological attributes to alleviate the adverse effects of 150 mM NaCl salinity stress on basil growth.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 562 ◽  
Author(s):  
Mona Soliman ◽  
Haifa A. Alhaithloul ◽  
Khalid Rehman Hakeem ◽  
Basmah M. Alharbi ◽  
Mohamed El-Esawi ◽  
...  

Nitric oxide (NO) at optimal levels is considered beneficial to plant functioning. The present study was carried out to investigate the role of exogenously applied NO (100 and 150 µM sodium nitropurusside, SNP) in amelioration of nickel (Ni)-mediated oxidative effects in eggplant. Ni stress declined growth and biomass production, relative water content (RWC), and chlorophyll pigment synthesis, thereby affecting the photosynthetic efficiency. Exogenously applied SNP proved beneficial in mitigating the Ni-mediated growth restrictions. NO-treated seedlings exhibited improved photosynthesis, stomatal conductance, and chlorophyll content with the effect of being apparent at lower concentration (100 µM SNP). SNP upregulated the antioxidant system mitigating the oxidative damage on membranes due to Ni stress. The activity of superoxide dismutase, catalase, glutathione S-transferase, ascorbate peroxidase, and glutathione reductase was upregulated due to SNP which also increased the ascorbate and reduced glutathione content. SNP-supplied seedlings also showed higher proline and glycine betaine accumulation, thereby improving RWC and antioxidant system. Glyoxalase I activity was induced due to SNP application declining the accumulation of methylglyoxal. NO-mediated mitigation of Ni toxicity was confirmed using NO scavenger (PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), which reversed the influence of SNP almost entirely on the parameters studied. Uptake of nitrogen (N), potassium (K), and calcium (Ca) was increased due to SNP application and Ni was reduced significantly. Therefore, this study revealed the efficiency of exogenous SNP in enhancing Ni stress tolerance through upregulating antioxidant and glyoxalase systems.


2015 ◽  
Vol 4 (1) ◽  
pp. 331-349 ◽  
Author(s):  
Hanan Saleh Al Othaimen

The relationship between compatible solutes (osmolytes) and antioxidants are the strategies that plants have developed to tolerate salt stress. A greenhouse experiment was carried out to study the response of presoaked Sweet Peppers (Capsicum annuum, L.) seeds in freshly prepared ascorbic acid (25 mML-1 ASC) or distilled water (control) for 12 h at natural environmental conditions, to reduce the effect of salinity stress. Generally, the sweet pepper seeds germination occurred after 4 days, while, the germination rate (%) were more faster after soaking the seeds in ascorbic acid compared with control (soaked in distilled water). NaCl salt-stress treatments caused a reduction in all growth parameters (fresh and dry weights of plant, leaf area and number per plant) compared control, particularly at high NaCl level (250 mM) more reduced. In the mean time, ascorbic acid had reduced the effect NaCl salinity stress on all growth parameters. Photosynthetic pigments (chlorophyll a & b and carotenoids) and chloroplast efficiency were increasing with salinity stress, but the response was more pronounced at 250 mM NaCl whether alone or combined with ascorbic acid. Also, salinity stress treatments tended to increased all of the total available carbohydrates (Monosaccharide, Disaccharides & polysaccharides), nitrogenous components (protein, amino acids & proline), antioxidase, (catalase, peroxidase & superoxide dismutases) enzymes activities and inorganic mineral elements (Na+, K+, N+3, P+3, Ca+2, Mg+2 & Cl-) but after soaked the seeds in ascorbic acid, these components tended to increased more. Application of NaCl salinity-stress on tomato plant induced the synthesis of nitrogenous components (protein, amino acids, proline), whereas, the tomato seeds soaked before planting in ascorbic acid which leads to remarkably increasing more for all nitrogenous components, antioxidase, carbohydrates and inorganic mineral elements content.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 42 ◽  
Author(s):  
Mohammad Abass Ahanger ◽  
Usman Aziz ◽  
Abdulaziz Abdullah Alsahli ◽  
Mohammed Nasser Alyemeni ◽  
Parvaiz Ahmad

The present study was carried out to investigate the beneficial role of exogenous application of salicylic acid (1 mM SA) and nitric oxide (100 μM NO) in preventing the oxidative damage in Vigna angularis triggered by salinity stress. Salinity (100 mM NaCl) stress reduced growth, biomass accumulation, chlorophyll synthesis, photosynthesis, gas exchange parameters, and photochemical efficiency (Fv/Fm) significantly. Exogenous application of SA and NO was affective in enhancing these growth and photosynthetic parameters. Salinity stress reduced relative water content over control. Further, the application of SA and NO enhanced the synthesis of proline, glycine betaine, and sugars as compared to the control as well as NaCl treated plants contributing to the maintenance of tissue water content. Exogenous application of SA and NO resulted in up-regulation of the antioxidant system. Activities of enzymatic antioxidants including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the content of non-enzymatic components, were more in SA + NO treated seedlings as compared to control and salinity stressed counterparts resulting in significant alleviation of the NaCl mediated oxidative damage. Content of nitrogen, potassium, and calcium increased due to SA and NO under normal conditions and NaCl stress conditions while as Na and Cl content reduced significantly.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2416
Author(s):  
Amina A. M. Al-Mushhin ◽  
Sameer H. Qari ◽  
Marwa A. Fakhr ◽  
Ghalia S. H. Alnusairi ◽  
Taghreed S. Alnusaire ◽  
...  

Myo-inositol has gained a central position in plants due to its vital role in physiology and biochemistry. This experimental work assessed the effects of salinity stress and foliar application of myo-inositol (MYO) on growth, chlorophyll content, photosynthesis, antioxidant system, osmolyte accumulation, and gene expression in quinoa (Chenopodium quinoa L. var. Giza1). Our results show that salinity stress significantly decreased growth parameters such as plant height, fresh and dry weights of shoot and root, leaf area, number of leaves, chlorophyll content, net photosynthesis, stomatal conductance, transpiration, and Fv/Fm, with a more pronounced effect at higher NaCl concentrations. However, the exogenous application of MYO increased the growth and photosynthesis traits and alleviated the stress to a considerable extent. Salinity also significantly reduced the water potential and water use efficiency in plants under saline regime; however, exogenous application of myo-inositol coped with this issue. MYO significantly reduced the accumulation of hydrogen peroxide, superoxide, reduced lipid peroxidation, and electrolyte leakage concomitant with an increase in the membrane stability index. Exogenous application of MYO up-regulated the antioxidant enzymes' activities and the contents of ascorbate and glutathione, contributing to membrane stability and reduced oxidative damage. The damaging effects of salinity stress on quinoa were further mitigated by increased accumulation of osmolytes such as proline, glycine betaine, free amino acids, and soluble sugars in MYO-treated seedlings. The expression pattern of OSM34, NHX1, SOS1A, SOS1B, BADH, TIP2, NSY, and SDR genes increased significantly due to the application of MYO under both stressed and non-stressed conditions. Our results support the conclusion that exogenous MYO alleviates salt stress by involving antioxidants, enhancing plant growth attributes and membrane stability, and reducing oxidative damage to plants.


Author(s):  
Mohammad Kazem Souri ◽  
Ghasem Tohidloo

Abstract Background Soil salinity is a real challenge in nowadays crop production in many regions. Various strategies have been applied to increase plant salinity tolerance. Salicylic acid (SA) frequently has been reported to increase plant salinity tolerance; however, the comparative efficiency of soil (root) or foliar application of SA has not been well tested yet. In this study, the effects of root or leaf pretreatment, and leaf treatment with 100 mg L−1 salicylic acid were evaluated on growth characteristics of tomato seedlings (Solanum lycopersicum Mill) under salinity stress. The plants were grown 3 weeks in sand that were fed with Hoagland nutrient solution with or without 100 mM NaCl. Results The results showed that salinity significantly reduced tomato seedling growth and traits of plant height, leaf area, shoot fresh weight, and nutrient concentration of potassium, calcium, iron and zinc compared to control plants. However, leaf SPAD value, root fresh and dry weights, leaf concentration of sodium, proline and soluble sugars were significantly increased under 100 mM NaCl salinity compared to control plants. Application of salicylic acid particularly by foliar pretreatment increased the tomato plant growth and those traits that were reduced by NaCl salinity. Application of SA, particularly foliar pretreatment, also increased the root fresh and dry weights, leaf proline and soluble sugars concentrations as compared with salinity alone. Foliar SA pretreatment significantly increased leaf K and Fe concentrations, whereas leaf Ca was significantly increased by either root or leaf pretreatment with SA under salinity. Conclusion The results indicate that the most to least effective method of SA application was leaf pretreatment, root pretreatment and leaf treatment, respectively, to recover the reduced growth parameters of tomato plant under salinity stress.


Author(s):  
I. A. Palagina

Succinate containing compounds possess many types of biological activity and are used for the development of drugs with the target and complex action. This paper is devoted to some aspects of the mechanism of succinamides’ action in a dose of 100 mg/kg. We studied the influence of the compound with antidiabetic properties, -phenylethylamide of 2-oxysuccinanyl acid ( -PhEA-OSAA), and its metabolites such as 2-hydroxyphenylsuccinamide (2-HPhSA) and β-phenylethylsuccinamide ( -PhESA) on the marker indicators of energetic metabolism (EM), antioxidant system (AOS) and nitric oxide (NO) metabolism in subacute experiment on rats. Studies have shown that the action of -FEA-OSAKA on metabolic homeostasis is realized through stimulation of EM, reduction of intensity of NO-synthase metabolism and weakening of the AOS. The nature of the action of -FES and 2-GFS, taking into account the indicators of the state of homeostasis, largely coincides with β-FEA-OSAKA. It was found that the key links in the mechanism of toxic action of succinamides are the effect on antioxidant potential, NO metabolism and energy processes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fujiao Nie ◽  
Jiazhao Yan ◽  
Yanjun Ling ◽  
Zhengrong Liu ◽  
Chaojun Fu ◽  
...  

Abstract Background Diabetic retinopathy (DR) has become a worldwide concern because of the rising prevalence rate of diabetes mellitus (DM). Despite much energy has been committed to DR research, it remains a difficulty for diabetic patients all over the world. Since apoptosis of retinal microvascular pericytes (RMPs) is the early characteristic of DR, this study aimed to reveal the mechanism of Shuangdan Mingmu (SDMM) capsule, a Chinese patent medicine, on oxidative stress-induced apoptosis of pericytes implicated with poly (ADP-ribose) polymerase (PARP) / glyceraldehyde 3-phosphate dehydrogenase (GAPDH) pathway. Methods Network pharmacology approach was performed to predict biofunction of components of SDMM capsule dissolved in plasma on DR. Both PARP1 and GAPDH were found involved in the hub network of protein-protein interaction (PPI) of potential targets and were found to take part in many bioprocesses, including responding to the regulation of reactive oxygen species (ROS) metabolic process, apoptotic signaling pathway, and response to oxygen levels through enrichment analysis. Therefore, in vitro research was carried out to validate the prediction. Human RMPs cultured with media containing 0.5 mM hydrogen oxide (H2O2) for 4 h was performed as an oxidative-damage model. Different concentrations of SDMM capsule, PARP1 inhibitor, PARP1 activation, and GAPDH inhibitor were used to intervene the oxidative-damage model with N-Acetyl-L-cysteine (NAC) as a contrast. Flow cytometry was performed to determine the apoptosis rate of cells and the expression of ROS. Cell counting kit 8 (CCK8) was used to determine the activity of pericytes. Moreover, nitric oxide (NO) concentration of cells supernatant and expression of endothelial nitric oxide synthase (eNOS), superoxide dismutase (SOD), B cell lymphoma 2 (BCL2), vascular endothelial growth factor (VEGF), endothelin 1 (ET1), PARP1, and GAPDH were tested through RT-qPCR, western blot (WB), or immunocytochemistry (ICC). Results Overproduction of ROS, high apoptotic rate, and attenuated activity of pericytes were observed after cells were incubated with media containing 0.5 mM H2O2. Moreover, downregulation of SOD, NO, BCL2, and GAPDH, and upregulation of VEGFA, ET1, and PARP1 were discovered after cells were exposed to 0.5 mM H2O2 in this study, which could be improved by PARP1 inhibitor and SDMM capsule in a dose-dependent way, whereas worsened by PARP1 activation and GAPDH inhibitor. Conclusions SDMM capsule may attenuate oxidative stress-induced apoptosis of pericytes through downregulating PARP expression and upregulating GAPDH expression.


Sign in / Sign up

Export Citation Format

Share Document